AKAI 4000DS Tape Deck

MANUFACTURER’S SPECIFICATIONS

Speeds: 3⅛ and 7⅛ ips. Frequency Response: 30 to 23,000 Hz + 3 dB at 7½ ips; 30 to 16,000 Hz + 3 dB at 3⅛ ips.
Signal-to-Noise: Better than 50 db. Erase Ratio: Better than 70 db. Wow and Flutter: Less than 0.15% rms at 7½ ips; less than 0.2% at 3⅛ ips. Distortion: Less than 1.5% (1000 Hz, 0 VU).

The name AKAI is a well-respected one in the tape recorder world, and they are especially remembered for their pioneering work with the cross-field head technique—a remarkable innovation in the days before low-noise tapes. They now have a wide range of high-fidelity products including receivers, amplifiers and preamplifiers, loudspeakers, open-reel recorders and cassette machines. One of these cassette recorders, the GXC-46D with Dolby system, was in fact reviewed in the November, 1973 issue.

The Model 4000DS reviewed here is a relatively inexpensive 4-track machine with a good all-round performance and having some interesting features like provision for sound-on-sound, automatic shut-off, a track selector switch and a monitor head. It is somewhat smaller than most open-reel machines, measuring 16 by 12 inches high and about 7 inches deep. On the extreme left hand side are the microphone input sockets and one for headphones. To the right of these is a dual-concentric control for line and microphone inputs to the left channel. On the other side of the two illuminated VU meters is a similar dual control for the right channel and then come four rocker switches for tape monitor, sound-on-sound, tape equalizer for 3⅛ and 7⅛ ips, and tape selector for normal and S.R.T. Above this one is another rocker switch for on-off. The front panel, on which are situated the VU meters and most of the controls, is finished in a charcoal black giving a pleasing contrast to the brushed silver top plate.

Tape control functions are shared by two large rotary lever switches, one for stop, forward, and record and the other for fast forward and rewind. The record push button is located below the capstan, and a digital counter is situated just to the left of the head cover. This cover is a handsome piece of die-casting on which is mounted a channel selector switch inscribed 3-2, stereo and 1-4. A pause control in the form of a lever is located above the on-off switch, and there is also a push button for a quick start. Input and output sockets (including a DIN type) are all located in a recess at the rear.

The equalizer switch does just that—there is no speed-change control as such and the user has to remove a sleeve from the capstan to change speeds from 7⅛ down to 3⅛ ips. This sleeve

the extra margin of quality

One look at an Audio Research component tells you that here is audio equipment built for perfectionists, by perfectionists. Meticulous design ... highest quality materials ... packaged with the kind of craftsmanship that's all but disappeared today.

Audio Research equipment isn't just well-engineered ... it's "over-engineered." Every element, from the chassis to the smallest electronic device, is chosen to exceed performance requirements by a wide margin. Our manufacturing techniques, too, go far beyond commonly accepted audio industry standards.

Few products anywhere are made with such attention to quality and reliability. So when you visit your Audio Research dealer it'll pay you to look as well as listen. If perfection is your goal, we think you'll agree: there's no substitute for Audio Research components.

audio research corporation
Box 6003 / Minneapolis, Minn. 55406 / Tel: (612) 721-2961

Check No. 3 on Reader Service Card
is then placed (or should be placed) on a storage post which is mounted near the aforesaid capstan.

Although there are separate recording and playback heads, I was interested to see that both had one-micron gaps—most unusual (see Fig. 1). The motor is a 4-pole induction type turning at 1800 rpm (on 60 Hz, that is) see Fig. 2. Eleven transistors are used, together with four ICs, and headphone output is taken through a step-down transformer. The bias oscillator is a normal push-pull arrangement with a frequency of 105 kHz.

Measurements

Figure 3 shows the frequency response at 7 1/2 ips with Maxell UD tape. The 3 dB point is 24 kHz—slightly better than the specifications. Response at 3 1/4 ips is seen in the next graph (Fig. 4), and here the 3 dB point is nearly 17 kHz, which would be considered excellent for 7 1/2 ips not so long ago! Figure 5 shows the playback response with a standard test tape, and the distortion characteristics are shown in Figs. 6 and 7. The THD at 0 VU is generally less than one percent, increasing to 3.8 percent at +5 VU. Signal to noise was 53 dB referred to 0 VU or 56 dB referred to +3 VU. You can put it another way and say it was 57 dB at 3 percent distortion. Figures for 3 1/4 ips were just over
2 dB less in each case. Sensitivity for 0 VU was 44 millivolts line and 0.6 millivolts at the microphone input. Output was 1.2 volts. Wow and flutter was excellent for a machine in this price range being 0.12 percent at 7½ ips and 0.15 percent at 3¼ using the DIN record-replay standard. Finally, the tape rewind time was 210 seconds for 1800 feet. If these figures are compared with the specifications, it will be seen that the maker’s ratings are quite conservative.

In-Use Test
The 4000 DS was used with a Sansui 9500 integrated amplifier and a Thorens 125 turntable fitted with a Shure Mk. III cartridge. Several tapes were made from records including some CBS SQ discs. Two sound-on-sound recordings were also made. To do this, a recording is made on one track in the normal manner. The tape is then rewound to the starting point using the counter and another track recorded while monitoring the first track. The tape is rewound again and the process is repeated again for tracks three and four. For playback, the track selector switch is set to the track on which the last recording is made and the mono mode selected by pulling the right level control knob outwards.

This kind of thing is very useful for the amateur composer or possibly for language training. Full instructions are given in the owner’s manual, which points out that as many individual recordings as desired can be transferred to a single track. The manual also describes the procedure for sound-with-sound, sound mixing, head cleaning, and tape splicing.

The two tape function knobs worked quite smoothly although it took some time before I got completely used to them. For instance, the stop position is not marked so I had to hesitate a split second before I turned the right knob the right way. I had no difficulty with the speed change modus operandi—mainly because I rarely use 3¼ ips. However, I can imagine that some people would feel a little frustrated at the lack of a speed-change switch. But again, this is an inexpensive machine, in fact, a remarkably inexpensive machine. In terms of basic performance, especially frequency response, distortion and wow and flutter, it compares very favorably with recorders costing much more. Certainly, it has more to offer than cassette units in the same price range.

George W. Tillett

Check No. 66 on Reader Service Card

ESS Preamplifier and Model 200 Power Amplifier

MANUFACTURER’S SPECIFICATIONS
Bandwidth Preamplifier & Frequency Response: High-level section, ±0.025 dB, 10 Hz to 40 kHz, ±0.1 dB, 5 Hz to 75 kHz; ±1 dB, 2 Hz to 2 MHz; Tone-control section, ±0.025 dB, 10 Hz to 25 kHz, ±0.1 dB, 5 Hz to 40 kHz; ±1 dB, 2 Hz to 150 kHz; Phono-preampl section, ±0.25 dB from RIAA curve, 20 Hz to 20 kHz. THD: 0.0075%, 20 Hz to 20 kHz, to rated output. IM Distortion: 0.005%, 60 Hz & 4 kHz mixed 4:1, to rated output. Noise: High-level section, 100 dB at rated output. Tone-control section, 96 dB at rated output. Phono-preampl section, 80 dB ref. to 10 mV, 1 kHz input. Phono Input Impedance/ Capacitance: 47 kohms, 50 pF. Rated Output: 2.5 V rms. Dimensions: 16% in. W x 6 in. H x 9 in. D. Price: $399.00

Model 200 Amplifier
Power Output: 100 watts rms per channel, 20 Hz to 20 kHz, both channels driven into 8 ohm loads. Frequency Response: ±0.25 dB, 22 Hz to 41 kHz, 1 watt, ±1 dB, 12 Hz to 133 kHz, 1 watt. Harmonic and IM Distortion: 0.1%, 20 Hz to 20 kHz, to rated output. Hum & Noise: 100 dB below rated output. Damping Factor: 100 at 20 Hz. Input Impedance: 47 kohms. Sensitivity: 1.5 V rms in for rated output. Price: $399.00

Notable here is the use of an Allen-Bradley pot for the volume control. The power switch is a rugged unit, capable of handling the in-rush of current from large solid-state power amps.

The construction of the power amp is also rugged and appropriate to an amplifier of this general power range. About the only construction point which might give trouble is the lack of support at the top of the two PC boards. Under rough handling, these boards could vibrate and possibly cause connecting wires to break loose. This should be no problem in the normal installation, however. The heat sinks are quite adequate for normal music use, although they did get very HOT during worse case testing conditions.

Circuit Descriptions
Functionally, the ESS preamp has four amplifier blocks per channel: a phono preamp-equalizer, an output amplifier, a tone-control amplifier, and a headphone amplifier. (See Fig. 5. During normal use, only the phono preamp and/or the output amp are in use. If the tone controls are switched in, that circuit is placed between the output amp and the main output on the back panel. The headphone amp is connected to the main output and is on-line all the time.

A time-delay relay circuit prevents turn-on thumps by opening the main outputs and shorting the internal output lines to ground during the delay period, which is about five seconds. On turn-off, the relay drops out very quickly, thus preventing turn-off surges from getting through to the power amp—many of which work for a short time when turned off.