CAUTION: This is a FISHER precision high-fidelity instrument. It should be serviced only by qualified personnel — trained in the repair of transistor equipment and printed circuitry.

TEST EQUIPMENT REQUIRED
The following are needed to completely test and align modern high-fidelity instruments such as amplifiers, toners and receivers.

- Vacuum-Tube Voltmeter (100-mV DC scale)
- Audio Vacuum-Tube Voltmeter (10-nV AC scale)
- Oscilloscope (Plate to 100 kHz Minimum)
- Audio (Sine-Wave) Generator
- Intermodulation Distortion Analyzer
- Harmonic Distortion Analyzer
- AM/FM Signal Generator
- Multiplex Generator (preferably with RF output — FISHER Model 100 or equal)
- 10.7-MHz Sweep Generator
- 455-kHz Sweep Generator
- Line Voltage Autotransformer or Voltage Regulator
- 2 — Load Resistors 4 or 8 Ohm, 50 Watt
- 2 — Full Range Speakers for Listening Tests
- Stereo Source — Turntable or Tape Recorder for Listening Tests
- Soldering Iron with Small Tip
- Fully insulated from Power Line
- Section Desoldering Tool

PRECAUTIONS
Many of these items are included just as a reminder — they are normal procedures for experienced technicians. Shortcuts can be taken but often they cause additional damage — to transistors, circuit components or the printed-circuit board.

Soldering — A well-cleaned, hot, clean soldering iron tip will make it easier to solder without damage to the printed-circuit board or the many circuit components mounted on it. It is not the wastage of the iron that counts — it is the heat available at the tip. Some 50-watt irons reach temperatures of 1,000° F — others will hardly melt solder. Small-diameter tips should be used for single solder connections — larger pyramidal and chisel tips are needed for larger areas.

- When removing defective resistors, capacitors, etc., the leads should be cut as close to the body of the circuit component as possible. (If the part is not being returned for in-warranty factory replacement it may be cut in half — with diagonal-cutting pliers — to make removal easier.)
- Special de-soldering tips are made for unsoldering multiple-terminal units like IF transformers and electrolytic capacitors. By unsoldering all terminals at the same time the part can be removed with little chance of breaking the printed-circuit board.
- Always disconnect the chassis from the power line when soldering. Turning the power switch OFF is not enough. Power-line leakage paths, through the heating element, can destroy transistors.

Transistors — Never attempt to do any work on the transistor amplifiers without first disconnecting the AC line cord and waiting until the power supply filter-capacitors have discharged.

- Guard against shorts — it takes only an instant for a base-to-collector short to destroy that transistor and possibly others direct-coupled to it. (In the time it takes for a dropped machine screw, washer or even the screwdriver, to glance off a pair of socket terminals (or between a terminal and the chassis) a transistor can be ruined.)
- DO NOT bias the base of any transistor to, or near, the same voltage applied to its collector.
- DO NOT use an ohmmeter for testing transistors. The voltage applied through the test probes may be higher than the base-emitter breakdown voltage of the transistor.

Output Stage and Driver — Replacements for output and driver transistors, if necessary, must be made from the same beta group as the original type. The beta group is indicated by a colored dot on the mounting flange of the transistor. Be sure to include this information, when ordering replacement transistors.

- If one output transistor burns out (open or shorts), always remove ALL output transistors in that channel and check the bias adjustment, the control and other parts in the network with an ohmmeter before inserting a new transistor. All output transistors in one channel will be destroyed if the base-biasing circuit is open on the emitter end.

- When mounting a replacement power transistor be sure the bottom of the flange, the micra insulator and the surface of the heat sink are free of foreign matter. Dust and grit can prevent perfect contact reducing heat transfer to the heat sink. Metallic particles can puncture the insulator and cause shorts — ruining the transistor.

- Silicone grease must be used between the transistor and the micra insulator and between the micra and the heat sink for heat conduction. (Use Dow-Corning DC-3 or C2P1914 or equivalent compounds made for power transistor heat conduction.)

- Use care when making connections to speakers and output terminals. Any frayed wire ends can cause shorts that may burn out the output transistors — they are direct-coupled to the speakers. To reduce the possibility of shorts at the speakers, lugs should be used on the exposed ends or at least the ends of the stranded wires should be twisted to prevent frayed wire ends. The current in the speakers and output circuitry is quite high. Poor contacts or small size wire can cause power losses in the speaker system. Use 14 or 16 AWG for long runs of speaker wiring.

Voltage Measurements — Voltage measurements are made with the line voltage adjusted to 117 volts and all readings are ±10%. All voltages are DC, measured with a VTVM to ground, with no signal input unless otherwise noted. indicates 1-kHz audio voltages, measured with an audio AC VTVM to ground at various points from the phone input to the power amplifier output.

Alignment Procedures — Replacement of transistors and components in the front end, IF amplifier and multiplex decoder will normally not require realignment of these circuits. Realignment of these circuits, unless absolutely necessary, is not recommended. Do not attempt a realignment unless the required test equipment is available and the alignment procedure is thoroughly understood.

BECAUSE ITS PRODUCTS ARE SUBJECT TO CONTINUOUS IMPROVEMENT, FISHER RADIO CORPORATION RESERVES THE RIGHT TO MODIFY ANY DESIGN OR SPECIFICATION WITHOUT NOTICE AND WITHOUT INCURRING ANY OBLIGATION.
SERVICE PROCEDURES

REPLACING STEREO BEACON LAMP

The STEREO BEACON lamp is a long-life bulb which should not require replacement for many years. When replacement is necessary, follow these instructions:
(1) Disconnect AC power cord.
(2) Remove the screws which hold the top cover to the chassis and slide off the top cover.
(3) Unsolder the lamp leads and remove the lamp from the lamp socket.
(4) Slide the lamp socket over the replacement lamp. Mount and cement the lamp to the chassis using Duco cement or an equivalent. Solder the leads to the terminals.
(5) Replace the top cover on the chassis and secure with the screws removed previously.

REPLACING POWER INDICATOR LAMP

The POWER indicator lamp is an indelibility-life, snap cartridge assembly which normally never requires replacement. If replacement is ever necessary, follow these instructions:
(1) Disconnect AC power cord.
(2) Remove the top and bottom covers by removing the screws which hold them to the chassis.
(3) Gently pull the six wires off the terminal pins behind the TUNE-DYNAMIC dial assembly. These wires connect the dial assembly to the chassis circuitry. Label each wire with its associated pin location to make replacement easier later.
(4) Gently pull the two leads of the POWER indicator lamp-cartridge off the terminal pins.
(5) Gently pull all knobs off the front panel control shafts. Remove the has nuts from the shafts and remove panel by pulling forward over the shafts.
(6) Remove the clip which holds the cartridge to the panel and pull the cartridge assembly through the front of the panel.
(7) Using the replacement cartridge, reverse the procedure to reassemble from panel, knobs, and covers. Do not forget to reconnect the wires removed previously.

CLEANING FRONT PANEL

WARNING: Use only plain lukewarm water for moistening a freshly laundered, lint-free cloth to clean the front control panel.

REMOVING P.C. BOARDS

To remove a board from its nylon mounts, squeeze the loop of each mounting clip (using pliers), and lift each corner of the board. To remount the board, align the mounting holes over the clips, and press firmly.

SERVICING INTEGRATED CIRCUITS

Integrated Circuits are used in this unit to approach the theoretical maximum of AM suppression and noise limiting. These IC's contain the equivalent of many circuit parts, including transistors, diodes, resistors, and capacitors. These integrated circuits are high-reliability devices, requiring minimum servicing. In the unlikely event that an IC requires servicing, it should be serviced in the same way as a transistor.

The preferred troubleshooting procedure is to first isolate the trouble to one stage using AC signal tracing methods. Once the suspected stage is located, the integrated circuit can be checked by measuring the DC voltages at the input and output leads of the IC using a DC VTM. These DC voltages are the most accurate indications of the operating conditions of the integrated circuit.

WARNING: Do not use an ohmmeter to check continuity with the IC mounted on the printed circuit board. Forward biasing the internal junctions within the IC may burn out the transistors.

When replacing an integrated circuit, the following precautions should be observed:
(1) Do not replace a defective IC until the cause of the trouble is found. All external resistors, capacitors, and transformers should be checked first to prevent the replacement integrated circuit from falling immediately due to a trouble in the connecting components.
(2) Solder and unsolder each lead separately using a pair of pliers or other heat sink on the lead to prevent damage from excessive heat.
(3) Check that the leads of the replacement IC are connected to the correct locations on the printed circuit board before turning on.

POWER AMPLIFIER CENTER VOLTAGE TEST

Turn VOLUME control to minimum. Set SPEAKERS switch to MAIN.
(1) Connect an Ohm load resistor across the LEFT SPKRS terminals and an Ohm load resistor across the RIGHT SPKRS terminals.
(2) Connect two 10k Ω 1% resistors in series across capacitor CS (150uF/15). Connect the common lead of a DC VTM to the junction of the two resistors.
(3) Connect the probe of the DC VTM to Test Point BS (junction of R38 and R37) on left channel of dual-channel power amplifier module. Meter should read 0 volt L27 volt.
(4) Connect the probe of the DC VTM to Test Point RBD (junction of R38 and R38B) on right channel of dual-channel power amplifier module. Meter should read 0 volt L27 volt.
(5) Disconnect the two 10k resistors.
SERVICE PROCEDURES

POWER AMPLIFIER IDLING CURRENT ADJUSTMENT

NOTE: Power amplifier center voltage test should be performed before starting the following procedure.

1. Turn VOLUME control to minimum.
2. Connect DC VTVM across resistor R36 on left channel of dual-channel power amplifier module.
3. Adjust R28 pot. I/OUT PUT BIAS ADJUST on left channel predriver/driver board for reading of 20mV on DC VTVM.
4. Connect DC VTVM across resistor R36 on right channel of dual-channel power amplifier module.
5. Adjust R28 pot. on right channel predriver/driver board for reading of 20mV on DC VTVM.

POWER OUTPUT MEASUREMENT

The output amplifier of this unit is designed to deliver its full-rated power with program material (record or music) into 8-ohm loads for an indefinite period of time. When a constant audio tone is used as a signal to measure the continuous RMS power output, the following precautions must be taken:
1. Measure the power output of one channel at a time.
2. Limit the measurement period to 10 minutes with a load-resistance of 8 ohms.

WARNING: If the power output of both channels is measured simultaneously, use a load of 8 ohms per channel and limit measurements to a period not longer than 5 minutes.

HARMONIC DISTORTION TEST

Set BALANCE, BASS, and TREBLE controls to their center positions. Set SELECTOR switch to AUX, SPEAKERS switch to MAIN, MODE switch to STEREO, and LOUDNESS switch to OFF. Unplug AC power cord.
1. Connect an 8-ohm, 50-watt resistor across the LEFT SPKRS MAIN terminals. In parallel with the load resistor, connect the input leads of a Harmonic Distortion Analyzer and the output leads of an accurately calibrated AC VTVM.
2. Connect a low-distortion audio sine-wave generator, set for 1,000 Hz, to the Left channel AUX input.
3. Connect AC power cord and rotate VOLUME control to maximum.
4. Increase audio generator level for 14 watts output (10.8 V RMS across 8-ohm load). HD meter should read 0.8% or less.
5. Repeat preceding steps for right channel.

INTERMODULATION DISTORTION TEST

Set BALANCE, BASS, and TREBLE controls to their center positions. Set SELECTOR switch to AUX, SPEAKERS switch to MAIN, MODE switch to STEREO, and LOUDNESS switch to OFF. Unplug AC power cord.
1. Connect an 8-ohm, 50-watt resistor across the LEFT SPKRS MAIN terminals. In parallel with the load resistor, connect the input leads of an Inter-Modulation distortion analyzer and the input leads of an accurately calibrated AC VTVM.
2. Connect IM-analyzer generator output to the Left channel AUX input.
3. Connect AC power cord and rotate VOLUME control to maximum.
4. Increase IM-analyzer generator level for 12 watts output (7.95 V RMS across 8-ohm load). AFTER ONE FULL MINUTE OF WARM-UP TIME, PROCEED TO NEXT STEP.
5. IM meter reading should be 0.8% or less.
6. Repeat preceding steps for right channel.

NOTE: If any of the preceding instructions differ from those in the IM-analyzer instruction manual, it is best to follow those in the manual. If a load resistor of 50-watt rating is built into the IM analyzer, a separate load resistor is not required.

FM IF AND DETECTOR ALIGNMENT

NOTE: When all TUNE-O-MATIC pushbuttons are released to the out position, FM audio will be muted.

Set SELECTOR switch to FM, MODE switch to STD, and AFC switch to OFF. Turn VOLUME control to minimum. Release all TUNE-O-MATIC pushbuttons to out position.
1. Connect 10.7 MHz sweep generator to Test Point 501.
SERVICE PROCEDURES

Set SELECTOR switch to FM, MODE switch to MONO, and AFC switch to OFF. Turn VOLUME control to minimum.
(1) Connect AC VTMV and scope to either Left or Right RCOR OUT jacks. Connect DC VTMV to Test Point 303 (on PC3).
(2) Press TUNE-O-MATIC pushbutton No. 1 and tune to 98 MHz.
(3) Connect RF signal generator to the FM ANTENNA terminals. Use a 120-ohm composition resistor in series with each lead from the generator (see Figure 3). Connect a scope and an AC VTMV to either the Left or Right RCOR OUT jack.
(4) Set RF generator output level to 2,000 mV, and generator frequency to receiver frequency, modulated with 400 Hz, 2.75 kHz deviation. Adjust top corners of CS03 (on IF board) for V = DC; AC VTMV should read 1.2 V (300mV).
(5) Detune RF generator until DC VTMV indicates ±1 volt. Turn AFC switch ON, DC VTMV should read a lower value (between 0 volt and ±1 volt).
(6) Turn AFC switch OFF and detune RF generator until DC VTMV indicates ±1 volt. Turn AFC switch ON, DC VTMV should read a lower value (between 0 volt and ±1 volt).

MULTIPLEX ALIGNMENT

Two methods of aligning the multiplexer decoder are given. The preferred procedure uses a multiplexer generator with RF and 19 kHz outputs and with 1 kHz modulation, such as the Fisher R 200 Multiplexer Generator. The latter procedure is the better method of alignment because the front end and IF stages are also checked through the use of this procedure. An alternate procedure for use with multiplexer generators not having an RF output is also given.

PREFERRED ALIGNMENT PROCEDURE

NOTE: Check the alignment of the IF amplifier before aligning the multiplexer decoder. Poor IF alignment can make proper MPX adjustment impossible.
Set SELECTOR switch to FM, MODE switch to STEREO, and AFC switch to OFF.
(1) Connect RF output of multiplexer generator to the FM ANTENNA terminals. Use a 120-ohm composition resistor in series with each lead from RF output (see Figure 3). Set MPX generator for external modulation with 19 kHz pilot carrier, ±7.5 kHz deviation (100 kHz, no audio). Tune one of the TUNE-O-MATIC pushbuttons to the RF frequency of the MPX generator.
(2) Connect DC VTMV to Test Point 403 (on MPX board).
(3) Adjust controls of Z401 and Z402 (on MPX board) for maximum reading on DC VTMV.
(4) Connect output of audio generator, set for 1 kHz, to the external modulation input of the MPX generator and to external sync input of an oscilloscope. Adjust audio generator level for composite signal ±7.5 kHz deviation (100 kHz, 90% audio). Modulate right channel only.
(5) Connect AC VTMV to Left RCORD output jack. Connect scope through voltage divider probe (see Figure 5) to Test Point 402 (on MPX board).
(6) Adjust controls of Z403 (on MPX board) for maximum gain and as straight as baseline as possible on scope (see Figure 5). AC VTMV should read minimum.
(7) With MPX generator modulated on right channel only, connect AC VTMV to Right RCORD jack. Record reading on AC VTMV.
(8) Set MPX generator to modulate left channel only. Adjust R107 SEPARATION CONTROL (on preamplifier board) for minimum reading on AC VTMV, at least 30 dB below reading recorded in Step (7). Record reading.

Figure 4. Composite Input To Multiplexer Decoder.

Figure 5. Voltage Divider Probe.

Figure 6. Waveform At Test Point 402.