CAUTION: This is a FISHER precision high-fidelity instrument. It should be serviced only by qualified personnel — trained in the repair of transistor equipment and printed circuitry.

TEST EQUIPMENT REQUIRED
The following are needed to completely test and align modern high-fidelity instruments such as amplifiers, tuners and receivers.

- 10.7-MHz Sweep Generator
- 455-kHz Sweep Generator
- Line Voltage Autotransformer
- or Voltage Regulator
- 2 — Load Resistors, 4 or 8 Ohm, 50 Watt
- 2 — Full Range Speakers for Listening Tests
- Steren Source — Turntable or Tape Recorder for Listening Tests
- Soldering Iron with Small Tip
- Fully Insulated from Power Line
- Section Desoldering Tool

PRECAUTIONS

Many of these items are included just as a reminder — they are normal procedures for experienced technicians. Shortcuts can be taken but often they cause additional damage to transistors, circuit components or the printed-circuit board.

Soldering—A well-tinned, hot, clean soldering iron tip will make it easier to solder without damage to the printed-circuit board or the many circuit components mounted on it. It is not the wattage of the iron that counts — it is the heat available at the tip. Some 30-watt irons reach temperatures of 1,000° F — others will hardly melt solder. Small-diameter tips should be used for single solder connections — larger pyramid and chisel tips are needed for larger areas.

- When removing defective resistors, capacitors, etc., the leads should be cut as close to the body of the circuit component as possible. (If the part is not being returned for in-warranty factory replacement it may be cut in half — with diagonal-cutting pliers — to make removal easier.)
- Special desoldering tips are made for unsoldering multiple-terminal units like IF transformers and electrolytic capacitors. By unsoldering all terminals at the same time the part can be removed with little chance of breaking the printed-circuit board.
- Always disconnect the chassis from the power line when soldering. Turning the power switch OFF is not enough. Power-line leakage through the heating element, can destroy transistors.

Transistors—Never attempt to do any work on the transistor amplifiers without first disconnecting the AC linecord and waiting until the power supply filter-capacitors have discharged.

- Guard against shorts — it takes only an instant for a base-to-collector short to destroy that transistor and possibly others direct-coupled to it. (At the time it takes for a dropped machine screw, washer or even the screwdriver, to glance off a pair of socket terminals (or between a terminal and the chassis) a transistor can be ruined.)
- DO NOT bias the base of any transistor to or near the same voltage applied to its collector.
- DO NOT use an ohmmeter for testing transistors. The voltage applied through the test probes may be higher than the base-emitter breakdown voltage of the transistor.

Output Stage and Driver — Replacements for output and driver transistors, if necessary, must be made from the same beta group as the original type. The beta group is indicated by a colored dot on the mounting flange of the transistor. Be sure to include this information, when ordering replacement transistors.

- If one output transistor burns out (open or shorts), always remove ALL output transistors in that channel and check the bias adjustment, the control and other parts in the network with an ohmmeter before inserting a new transistor. All output transistors in one channel will be destroyed if the base-biasing circuit is open on the emitter end.
- When mounting a replacement power transistor be sure the bottom of the flange, the micro-insulator and the surface of the heat sink are free of foreign matter. Dust and grit can prevent perfect contact reducing heat transfer to the heat sink. Metallic particles can puncture the insulator and cause shorts — initiating the transistor.
- Silicone grease must be used between the transistor and the micro-insulator and between the micro and the heat sink for best heat conduction. Use Dow-Corning DC-3 or C-3104 for equivalent compounds made for power transistor heat conduction.
- Use care when making connections to speakers and output terminals. Any frayed wire ends can cause shorts that may burn out the output transistors — they are direct-coupled to the speakers. To reduce the possibility of shorts at the speakers, lugs should be used on the exposed ends or at least the ends of the stranded wire should be tied to prevent frayed wire ends. The current in the speakers and output circuitry is quite high. Poor contacts or small size wire can cause power losses in the speaker system. Use 14 or 16 AWG for long runs of speaker wire.

Voltage Measurements — Voltage measurements are made with the line voltage adjusted to 117 volts and all readings are ±10%. All voltages are DC, measured with a VTVM to ground, with no signal input unless otherwise noted. Indicates ±1 kHz audio voltages, measured with an audio AC VTVM to ground at various points from the phone input to the power amplifier output.

Alignment Procedures — Replacement of transistors and components in the front end, IF amplifier and multiplex decoder will normally not require realignment of these circuits. Realignment of these circuits, unless absolutely necessary, is not recommended. Do not attempt a realignment unless the required test equipment is available and the alignment procedure is thoroughly understood.

BECAUSE ITS PRODUCTS ARE SUBJECT TO CONTINUOUS IMPROVEMENT, FISHER RADIO CORPORATION RESERVES THE RIGHT TO MODIFY ANY DESIGN OR SPECIFICATION WITHOUT NOTICE AND WITHOUT INCURRING ANY OBLIGATION.
DIAL STRINGING

(1) Disconnect AC power cord.
(2) Remove the screws which hold the top cover to the chassis and heat sink and lift off the cover.
(3) Gently pull all knobs off the front panel control shafts. Remove the hex nuts from the shafts and remove panel by pulling forward over the shafts.
(4) Remove the dial pointer from the dial cord.
(5) Gently pull the four leads from the terminal pins on the top rear of the meter and label each wire with its associated pin location for easy replacement later.
(6) Gently pull the two pairs of dial lamp leads from the terminal pins on the chassis and label each lead.
(7) Gently pull the pair of meter leads from the terminal pins on the chassis and label.

NOTE: These ten push-on terminal leads which connect the dial glass panel to the chassis must be disconnected in order to remove the dial glass panel.
(8) Remove the screws holding the dial glass panel and remove the panel with the dial glass, pilot lamps, and meter attached.
(9) Rotate the tuning capacitor drive-drum to its maximum CCW position. Loosen the machine screw in the center of the drive-drum.
(10) Tie end of dial cord to one end of START spring. Fasten spring to bottom right ear inside drive-drum. See Figure 1.
(11) Run the dial cord through the slot in the rim of the drive-drum and set in the underside of groove 5.
(12) Pull dial cord taut and wrap 2 turns CCW around tuning shaft. See Figure 2.
(13) Guide the dial cord under and around pulley "A", across to the left side, down and around pulleys "B" and "C". Keep the dial cord taut during this procedure.
(14) Rotate the drive-drum to its maximum CW position, allowing the cord to wind onto the drive-drum. Keep the dial cord taut during this procedure.
(15) Guide the dial cord under the drive-drum and into groove 5. Bring the dial cord around groove 5 and into the slot in the drive-drum. See Figure 2.
(16) With the machine screw loosened, place the cord under the beveled washer, pull the dial cord taut, and tighten the screw.
(17) Turn the tuning shaft to rotate the drive-drum fully CW and fully CCW to distribute the tensioning along the dial cord. Repeat steps 161 and 171 until the START spring is tensioned.
(18) Replace the dial glass panel assembly using the four mounting screws removed previously.
(19) Reconnect the ten leads (removed previously!) to their respective terminal pins.
(20) Place the dial cord over and under the tabs on the rear of the dial pointer, (see detail) and place the pointer on the top of the dial glass panel.
(21) Turn the tuning shaft fully CCW. Slide dial pointer to zero (0) calibration mark on the logging scale while holding tuning shaft fully CCW. Cement dial pointer to dial cord to prevent slippage. Allow cement to thoroughly dry.
(22) Replace the top cover and secure with the screws removed previously. Replace the knobs on the control shafts.
SERVICE PROCEDURES

REPLACING DIAL LAMPS
1. Disconnect AC power cord.
2. Gently pull all knobs off the front panel control shafts. Remove the hex nuts from the shafts and remove panel by pulling forward over the shafts.
3. Snap out the defective lamp from the spring clip. Place the new lamp in the socket making sure that the unpainted side of the lamp faces the edge of the dial glass.
4. Replace the front panel and secure with the hex nuts removed previously. Replace the knobs on the control shafts.

REPLACING METER
1. Disconnect AC power cord.
2. Remove the screws which hold the top cover to the chassis and heat sink and lift off the cover.
3. Gently pull all knobs off the front panel control shafts. Remove the hex nuts from the shafts and remove panel by pulling forward over the shafts.
4. Gently pull the four leads from the terminal pins on the top rear of the meter and label each wire with its associated pin location for easy replacement later.
5. Gently pull the two pairs of dial lamp leads from the terminal pins on the chassis and label each lead.
6. Gently pull the pair of meter leads from the terminal pins on the chassis and label.

CLEANING FRONT PANEL
WARNING: Use only plain lukewarm water for moistening a finely laundered, soft lint-free cloth to clean the front control panel.

REMOVING P.C. BOARDS
To remove a board from its nylon mounts, squeeze the loop of each mounting clip (plastic clip), and lift each corner of the board. To remount the board, align the mounting holes over the clips, and press firmly.

SERVICING INTEGRATED CIRCUITS
Integrated Circuits are used in this unit to approach the theoretical maximum of AM suppression and noise limiting. These IC’s contain the equivalent of many circuit parts, including transistors, diodes, resistors, and capacitors. These integrated circuits are high-reliability devices, requiring minimum servicing. In the unlikely event that an IC requires servicing, it should be serviced in the same way as a transistor. The preferred troubleshooting procedure is to first isolate the trouble to one stage using AC signal tracing methods. Once the suspected stage is located, the integrated circuit can be checked by measuring the DC voltages at the input and output leads of the IC using a DC VTVM. These DC voltages are the most accurate indications of the operating conditions of the integrated circuit.

WARNING: Do not use an ohmmeter to check continuity with the IC mounted on the printed circuit board. Forward biasing the internal junctions within the IC may burn out the transistors.

When replacing an integrated circuit, the following precautions should be observed:
1. Do not replace a defective IC until the cause of the trouble is found. All external resistors, capacitors, and transformers should be checked first to prevent the replacement integrated circuit from failing immediately due to a trouble in the connecting components.
2. Solder and unsolder each lead separately using a pilfer or other heat sink on the lead to prevent damage from excessive heat.
3. Check that the leads of the replacement IC are connected to the correct locations on the printed circuit board before turning the set on.

REPLACING STEREO BEACON AND METER LAMPS
NOTE: The compartment lamp assembly, mounted on the rear of the meter, contains the meter lamp and the STEREO BEACON lamp, and must be replaced as a complete unit.
POWER AMPLIFIER CENTER VOLTAGE TEST

Turn VOLUME control to minimum. Turn MAIN SPEAKERS switch to ON.
1. (1) Connect an 8-ohm load resistor across the LEFT SPKRS MAIN terminals and an 8-ohm load resistor across the RIGHT SPKRS MAIN terminals.
2. (2) Connect two 10 k. a 1% resistors in series across capacitor CB (200µF). Connect the common lead of a DC VTM to the junction of the two resistors.
3. (3) Connect the probe of the DC VTM to Test Point B5 (junction of R536 and R537) on left channel of dual-channel power amplifier module. Meter should read 0 volts ±1.5 volts.
4. (4) Connect the probe of the DC VTM to Test Point B50 (junction of R536 and R538) on right channel of dual-channel power amplifier module. Meter should read 0 volts ±1.5 volts.
5. (5) Disconnect the two 10k resistors.

POWER AMPLIFIER IDLING CURRENT ADJUSTMENT

NOTE: Power amplifier center voltage test should be performed before starting the following procedure.

Turn VOLUME control to minimum.
1. (1) Connect DC VTM across resistor R35 (0.47µm) on left channel of dual-channel power amplifier module. Meter should read between 15 mV and 35 mV.
2. (2) If necessary, adjust R55 (OUTPUT BIAS ADJUST) pot. on predriver/driver board for reading between 15 mV and 35 mV on DC VTM. Optimum amplifier performance will be achieved with 15 mV setting.
3. (3) Connect DC VTM across resistor R36 on right channel of dual-channel power amplifier module. Meter should read between 15 mV and 35 mV on DC VTM.
4. (4) If necessary, adjust R56 pot. on predriver/driver board for reading between 15 mV and 35 mV on DC VTM.

POWER OUTPUT MEASUREMENT

The output amplifier of this unit is designed to deliver its full-rated power with program material (voice or music) into 8-ohm loads for an indefinite period of time. When a constant audio tone is used as a signal to measure the continuous RMS power output, the following precautions must be taken:
1. (1) Measure the power output of one channel at a time.
2. (2) Limit the measurement period to 10 minutes with a load resistance of 8 ohms.
3. (3) A load resistor with at least a 50-watt rating must be used.
WARNING: If the power output of both channels is measured simultaneously, use a load of 8 ohms per channel and limit measurements to a period not longer than 5 minutes.

SERVICE PROCEDURES

HARMONIC DISTORTION TEST

Set BALANCE, BASS, and TREBLE controls to their center positions. Set SELECTOR switch to AUX, LOUDNESS CONTROL switch to OFF, MODE switch to STEREO, and MAIN SPEAKERS switch to ON, Unplug AC power cord.
1. (1) Connect an 8-ohm, 50-watt resistor across the LEFT SPKRS MAIN terminals. In parallel with the load resistor, connect the input leads of an HD analyzer and the input leads of an accurately calibrated AC VTM.
2. (2) Connect a low-distortion audio linear-wave generator, set for 1.000 Hz, to the Left channel AUX input.
3. (3) Connect AC power cord and rotate VOLUME control to maximum.
4. (4) Increase audio generator level for 20 watts output (12.6 V RMS across 8-ohm load). NO meter should read 0.5% or less.
5. (5) Repeat preceding steps for right channel.

INTERMODULATION DISTORTION TEST

NOTE: Bypass CT and CB with direct connections for IM test on 23R remote chassis.

Set BALANCE, BASS and TREBLE controls to their center positions. Set SELECTOR switch to AUX, LOUDNESS CONTROL switch to OFF, MODE switch to STEREO, and MAIN SPEAKERS switch to ON. Unplug AC power cord.
1. (1) Connect an 8-ohm, 50-watt resistor across the LEFT SPKRS MAIN terminals. In parallel with the load resistor, connect the input leads of an IM distortion analyzer and the input leads of an accurately calibrated AC VTM.
2. (2) Connect IM-analyzer generator output to the Left channel AUX input. Set level of IM-analyzer generator for 600 mV output.
3. (3) Connect AC power cord and adjust VOLUME control for 20 watts output (10.3 V RMS across 8-ohm load). AFTERT ONE FULL MINUTE OF WARM-UP, PROCEED TO NEXT STEP.
4. (4) IM meter reading should be 1.0% or less.
5. (5) Repeat preceding steps for right channel.
NOTE: If any of the preceding instructions differ from those in the IM-analyzer instruction manual, it is best to follow those in the manual. If a load resistor of 50-watt rating is built into the IM analyzer, a separate load resistor is not required.

FM IF AND DETECTOR ALIGNMENT

Set SELECTOR switch to FM. Turn VOLUME control to minimum.
1. (1) Disconnect the jumper lead from FM Test Point 301 (pin 26 on AM/FM IF, MPX board) and connect vertical input of scope to Test Point 301. Connect ground lead of scope to pin 3G.
2. (2) Connect an 82k resistor across scope input and set scope vertical sensitivity to approximately 100mV/cm.
SERVICE PROCEDURES

Figure 4.
Figure 5.
Figure 6.

(3) Connect 10.7 MHz sweep generator to Test Point 501 (pin 5F on FM RF board). Connect ground lead of generator to pin 5G. Adjust generator level and sweep to observe IF response curve.

(4) Adjust top and bottom cores of Z306, Z304, and Z302 (on AM/FM IF, MPX board) for symmetry and maximum gain.

(5) Adjust top and bottom cores of LS06 (on FM RF board) for maximum gain and symmetry. Repeat alignment until maximum gain and symmetry are obtained (see Figure 4).

(6) Increase generator level to full output (approximately 100,000 volts). If necessary, slightly nudge top core of Z306 to center 10.7 MHz marker (see Figure 6).

(7) Reconnect the jumper lead to FM Test Point 201 (pin 3N on AM/FM IF, MPX board) removed previously. Disconnect the 8k resistor across scope input connected previously.

(8) Reduce generator sweep to zero (sweep off). Adjust FM METER ADJ. pot. R328 (on AM/FM IF, MPX board) for front panel tuning meter reading of 4.5.

(9) Connect vertical input of scope to Test Point 3M (on AM/FM IF, MPX board). Use same scope sensitivity setting (100mV/cm).

(10) Adjust generator level and sweep to observe detector “B” curve. Adjust bottom core of Z306 first, then top core for maximum gain and symmetry (see Figure 6).

(11) Connect D.C. VTVM to Test Point 3M. Use 1.5 volts DC meter scale or lower.

(12) Reconnect top core of Z306 for zero (0) reading (within ±0.5 volts) on DC VTVM.

(2) Connect an FM generator to the FM ANTENNA terminals. Use a 120-ohm composition resistor in series with each lead from the generator (see Figure 7).

(3) Connect a scope and an AC VTVM to either Left or Right RCDR OUT jack.

(4) Set FM generator frequency and TUNING dial pointer to 90 MHz. Modulate generator with 400 Hz, ±75 kHz deviation. Set generator level as low as possible.

NOTE: Use the tuning meter during alignment and adjust the generator level to keep the meter reading between 2 and 3.

(5) Align oscillator coil LS04 first, then (mixer coil) LS03 and (IF coil) LS02 for maximum reading on AC VTVM and tuning meter, and maximum waveform amplitude and symmetry.

(6) Set generator frequency and TUNING dial pointer to 100 MHz.

(7) Align (oscillator trimmer) CS12 first, then (mixer trimmer) CS11 and (IF trimmer) CS03 for maximum reading on AC VTVM and tuning meter, and maximum waveform amplitude and symmetry.

(8) Repeat alignment several times until accurate dial calibration and maximum gain are obtained. Keep the generator output as low as possible during all adjustments.

FM FRONT END ALIGNMENT

NOTE: FM IF alignment must be performed before starting this procedure.

Set SELECTOR switch to FM, and MODE switch to MONO. Turn VOLUME control to minimum.

(1) Set TUNING dial pointer to zero (0) calibration mark on the logging scale. If the dial pointer is not centered on the 0 at the extreme end of the knob rotation, reposition the pointer assembly on the dial cord and cement the pointer in place to prevent slippage. Allow cement to thoroughly dry.

NOTE: Repositioning the dial pointer may require realignment of AM RF board for correct AM station calibration.

(2) Connect an FM generator to the FM ANTENNA terminals. Use a 120-ohm composition resistor in series with each lead from the generator (see Figure 7).

(3) Connect a scope and an AC VTVM to either Left or Right RCDR OUT jack.

(4) Set FM generator frequency and TUNING dial pointer to 90 MHz. Modulate generator with 400 Hz, ±75 kHz deviation. Set generator level as low as possible.

NOTE: Use the tuning meter during alignment and adjust the generator level to keep the meter reading between 2 and 3.

(5) Align oscillator coil LS04 first, then (mixer coil) LS03 and (IF coil) LS02 for maximum reading on AC VTVM and tuning meter, and maximum waveform amplitude and symmetry.

(6) Set generator frequency and TUNING dial pointer to 100 MHz.

(7) Align (oscillator trimmer) CS12 first, then (mixer trimmer) CS11 and (IF trimmer) CS03 for maximum reading on AC VTVM and tuning meter, and maximum waveform amplitude and symmetry.

(8) Repeat alignment several times until accurate dial calibration and maximum gain are obtained. Keep the generator output as low as possible during all adjustments.

NOTE: FM IF alignment must be performed before starting this procedure.

Set SELECTOR switch to FM, and MODE switch to MONO. Turn VOLUME control to minimum.

(1) Set TUNING dial pointer to zero (0) calibration mark on the logging scale. If the dial pointer is not centered on the 0 at the extreme end of the knob rotation, reposition the pointer assembly on the dial cord and cement the pointer in place to prevent slippage. Allow cement to thoroughly dry.

NOTE: Repositioning the dial pointer may require realignment of AM RF board for correct AM station calibration.

(2) Connect an FM generator to the FM ANTENNA terminals. Use a 120-ohm composition resistor in series with each lead from the generator (see Figure 7).

(3) Connect a scope and an AC VTVM to either Left or Right RCDR OUT jack.

(4) Set FM generator frequency and TUNING dial pointer to 90 MHz. Modulate generator with 400 Hz, ±75 kHz deviation. Set generator level as low as possible.

NOTE: Use the tuning meter during alignment and adjust the generator level to keep the meter reading between 2 and 3.

(5) Align oscillator coil LS04 first, then (mixer coil) LS03 and (IF coil) LS02 for maximum reading on AC VTVM and tuning meter, and maximum waveform amplitude and symmetry.

(6) Set generator frequency and TUNING dial pointer to 100 MHz.

(7) Align (oscillator trimmer) CS12 first, then (mixer trimmer) CS11 and (IF trimmer) CS03 for maximum reading on AC VTVM and tuning meter, and maximum waveform amplitude and symmetry.

(8) Repeat alignment several times until accurate dial calibration and maximum gain are obtained. Keep the generator output as low as possible during all adjustments.

NOTE: FM IF alignment must be performed before starting this procedure.

Set SELECTOR switch to FM, and MODE switch to MONO. Turn VOLUME control to minimum.

(1) Set TUNING dial pointer to zero (0) calibration mark on the logging scale. If the dial pointer is not centered on the 0 at the extreme end of the knob rotation, reposition the pointer assembly on the dial cord and cement the pointer in place to prevent slippage. Allow cement to thoroughly dry.

NOTE: Repositioning the dial pointer may require realignment of AM RF board for correct AM station calibration.
TUNING METER CALIBRATION

NOTE: Meter calibration should be performed after FM IF and RF alignment.
Set SELECTOR switch to FM. Turn VOLUME control to minimum.
(1) Connect an FM generator to the FM ANTenna terminals. Use a 120-ohm resistor in series with each lead from the generator (see Figure 7). Set generator frequency to 1 MHz, output level to full output (approximately 100,000 uV) with audio modulation off.
Adjust generator frequency for peak tuning meter reading.
(4) Adjust FM METER ADJ. pot. R22E (on AM/FM IF, MPX board) for tuning meter reading of 4.5.

MULTIPLEX ALIGNMENT

Two methods of aligning the multiplex decoder are given. The preferred procedure uses a multiplex generator with IF and RF outputs with 1 kHz modulation, such as the FISHER 300 Multiplex Generator. This is the better method of alignment because the front end and IF stages are also checked through the use of this procedure. An alternate procedure for use with multiplex generators not having an RF output is also given.

PREFERRED ALIGNMENT PROCEDURE

NOTE: Check the alignment of the IF amplifier before aligning the multiplexer decoder. Poor IF alignment can make proper MPX adjustment impossible.
Set SELECTOR switch to FM. MODE switch to STEREo, and VOLUME control to minimum.
(1) Connect RF output of multiplexer generator to the FM ANTenna terminals. Use a 120-ohm resistor in series with each lead from RF output (see Figure 7). Set MPX generator for external modulation with 1 kHz pilot carrier, ±0.5 kHz deviation ±0.1% pilot, ±0.1% audio. Tune receiver to IF frequency of MPX generator.
(2) Connect DC VTM to Test Point 402 (pin 40A on AM/FM IF, MPX board).
(3) Adjust core of Z401 and Z402 (on AM/FM IF, MPX board) for maximum reading on DC VTM (+2.5 to 4 VDC).
(4) Connect output of audio generator, set for -1 kHz, to external modulation input of MPX generator and to external sync input of an oscilloscope. Adjust audio generator level for complete signal ± 75 kHz deviation ±0.1% pilot, ±0.1% audio. Modulate right channel only.
(5) Connect AC VTM to LhRDCR OUT jack. Connect scope through voltage divider probe (see Figure 8) to Test Point 401 (pin 40A on AM/FM IF, MPX board).
(6) Adjust core of Z403 (on AM/FM IF, MPX board) for maximum gain and as straight a baseline as possible (see Figure 9). AC VTM should read minimum.
(7) Set MPX generator modulated on right channel only, connect AC VTM to RlHDCR OUT jack. Record reading on AC VTM.
(8) Set MPX generator to modulate left channel only. Adjust R107 SEPARATION CONTROL (on preamplifier board) for maximum reading on AC VTM; at least 20 dB below reading recorded in Step (7). Record reading.

AM IF ALIGNMENT

Set SELECTOR switch to AM, and VOLUME control to minimum.
(1) Connect 455 kHz sweep generator to pin 7A (on AM RF board). Use a 0.1uF capacitor in series with the generator lead. Connect generator ground to pin 7C.
(2) Connect vertical input of scope to Test Point 302 (pin 30A on AM/FM IF, MPX board). Connect scope ground to pin 3G. Set vertical scale to maximum and see that the output is as straight a line as possible.
(3) Adjust generator level and see that the trace is as straight a line as possible.

AM RF ALIGNMENT

NOTE: AM IF alignment must be performed before starting this procedure.
Set SELECTOR switch to AM, and VOLUME control to minimum.
(1) Set TUNING dial pointer to zero (0) calibration mark on the logging scale. If dial pointer does not coincide with the 0 mark, adjust for approximation, repoint the pointer in place to prevent slippage.

SERVICE PROCEDURES

CORRECT FOR RIGHT CHANNEL MODULATION

INCOMPLETE

WAVE BASELINE

Figure 9. Waveform At Test Point 402.

Figure 10. Composite Input To Multiplex Decoder.

NOTE: Repositioning the dial pointer may require realignment FM RF board for correct FM station calibration.
(2) Open the AM ANTenna GND link at the antenna terminals. Connect an AM generator to the AM ANTenna and GND terminals.
(3) Connect a scope and an AC VTM to either the Left or Right RDCR OUT jack.
(4) Set AM generator frequency and TUNING dial pointer to 600 kHz. Use 30% modulation with 400 Hz. Set generator output as shown in Figure 11.
(5) Align oscillator coil Z701 (on AM RF board) for maximum readout on AC VTM and maximum waveform amplitude and symmetry.
(6) Reconnect the jumper lead going to pin 4A (on AM/FM IF, MPX board) removed previously.