CD RECEIVER
CKDC-395
CKDC-395A
CKDC-495
SERVICE MANUAL

MANUFACTURED BY VISTEON

Panel assy
CKDC-395 (A64-3687-02)

Panel assy
CKDC-395A (A64-3688-02)

Panel assy
CKDC-495 (A64-3689-02)

These 3 panel assies do not include any knobs. For details, refer to the exploded view.

Mounting hardware assy
(J22-0227-03)

Plastic cabinet
(A02-2746-01)

This plastic cabinet does not include the 2 cushions. For details, refer to the exploded view.

DC cord
(E30-6123-15)

Escutcheon
(B07-3160-01)

Lever
(D10-4705-04) x2

Screw (4x16)
(N84-4016-48)

This product uses Lead Free solder.
ELECTRIC UNIT (X34-3920-1x)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Application / Function</th>
<th>Operation / Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>SYSTEM µ-COM</td>
<td>System control.</td>
</tr>
<tr>
<td>IC3</td>
<td>POWER SUPPLY</td>
<td>DC5Vx2, 7.9Vx1, 8.1Vx1, 10.3V, P.CON, P-ANT output.</td>
</tr>
<tr>
<td>IC4</td>
<td>POWER IC</td>
<td>Audio signal amplifier.</td>
</tr>
<tr>
<td>IC6</td>
<td>MUTE LOGIC</td>
<td>Mute control.</td>
</tr>
<tr>
<td>IC7</td>
<td>RDS DECODER</td>
<td>For other models.</td>
</tr>
<tr>
<td>IC8</td>
<td>RESET</td>
<td>“L” when detection voltage goes below 3.6V.</td>
</tr>
<tr>
<td>IC10</td>
<td>E-VOL & TUNER</td>
<td>E-VOL, Tuner, Stereo decode.</td>
</tr>
<tr>
<td>IC11</td>
<td>E2PROM</td>
<td>Saves and writes tuner adjustment data.</td>
</tr>
<tr>
<td>IC15</td>
<td>VFD REGULATOR</td>
<td>11.3V output voltage for LED and VFD.</td>
</tr>
<tr>
<td>Q51</td>
<td>SERGE DET</td>
<td>“ON” when the base goes “H”.</td>
</tr>
<tr>
<td>Q52</td>
<td>BU DET</td>
<td>“ON” when the base goes “H”.</td>
</tr>
<tr>
<td>Q53</td>
<td>ACC DET</td>
<td>“ON” when the base goes “H”.</td>
</tr>
<tr>
<td>Q71</td>
<td>SERVO+B CONTROL SW</td>
<td>“ON” when the base goes “H”.</td>
</tr>
<tr>
<td>Q72,73</td>
<td>SERVO+B AVR</td>
<td>Output voltage level : 7.5V.</td>
</tr>
<tr>
<td>Q74</td>
<td>IC3 CONTROL SW</td>
<td>“ON” when the base goes “H” (Output voltage : 10.3V).</td>
</tr>
<tr>
<td>Q151</td>
<td>PANEL 5V SW</td>
<td>“ON” when the base goes “L”.</td>
</tr>
<tr>
<td>Q155</td>
<td>DSI ILLUMI SW</td>
<td>“ON” when the base goes “L”.</td>
</tr>
<tr>
<td>Q252</td>
<td>IC4 STBY SW</td>
<td>“ON” when the base goes “L”.</td>
</tr>
<tr>
<td>Q330</td>
<td>Q351, 352 MUTE DRIVER</td>
<td>“ON” when the base goes “L”.</td>
</tr>
<tr>
<td>Q351</td>
<td>Lch PRE MUTE SW</td>
<td>Pre-output is muted when the base goes “H”.</td>
</tr>
<tr>
<td>Q352</td>
<td>Rch PRE MUTE SW</td>
<td>Pre-output is muted when the base goes “H”.</td>
</tr>
<tr>
<td>Q501</td>
<td>AM RF AMP</td>
<td>Adjusts for AM-RF gain.</td>
</tr>
</tbody>
</table>

CD PLAYER UNIT (X32-5750-00)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Application / Function</th>
<th>Operation / Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>RF AMPLIFIER responding to CD-RW</td>
<td>Generation of RF signal based on the signals from the APC circuit and pickup, and generation of servo error (focusing error and tracking error) signals. Detection of dropout, anti-shock, track crossing and off-tracking conditions, included gain control function during CD-RW.</td>
</tr>
<tr>
<td>IC2</td>
<td>CD SIGNAL PROCESSOR built-in µ-COM</td>
<td>Focusing, tracking, sled and spindle servo processing. Automatic adjustment (focusing, tracking, gain, offset and balance) operations. Digital signal processing (DSP, PLL, sub-codes, CIRC error correction, audio data interpolation processing) operations, and microcomputer function.</td>
</tr>
<tr>
<td>IC3</td>
<td>4ch BTL DRIVER</td>
<td>Focusing coil, tracking coil, spindle motor and sled motor driver, disc loading and eject operation.</td>
</tr>
<tr>
<td>IC4</td>
<td>L.P.F. (LOW PASS FILTER)</td>
<td>2nd low pass filter for audio signals.</td>
</tr>
<tr>
<td>Q1</td>
<td>APC (AUTOMATIC POWER CONTROL)</td>
<td>LD power control.</td>
</tr>
<tr>
<td>Q2</td>
<td>DIGITAL +5V SW</td>
<td>“ON” When P. ON signal goes “L”.</td>
</tr>
<tr>
<td>Q3, 4</td>
<td>Q4 SW</td>
<td>“ON” When P. ON signal goes “L” (SW+5V is ON).</td>
</tr>
<tr>
<td>Q5, 6</td>
<td>ANALOG +8V SW</td>
<td>“ON” When P. ON signal goes “L” (Q3 is ON).</td>
</tr>
<tr>
<td>Q5, 6</td>
<td>CURRENT AMP</td>
<td>Current driver.</td>
</tr>
</tbody>
</table>
COMPONENTS DESCRIPTION

SWITCH UNIT (X16-3370-1x)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Application / Function</th>
<th>Operation / Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC3</td>
<td>REMOTE SENSOR</td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td>VFD DRIVER</td>
<td></td>
</tr>
<tr>
<td>Q21</td>
<td>PAN SW5V</td>
<td>“ON” when the base goes “H”.</td>
</tr>
</tbody>
</table>

MICROCOMPUTER’S TERMINAL DESCRIPTION

SYSTEM µ-COM : IC1 on X34- (ELECTRIC UNIT)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Active (H/L)</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Application</th>
<th>Processing Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>DC ERR</td>
<td>I</td>
<td>DC offset detection input</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>LINE MUTE</td>
<td>I</td>
<td>Phone detection</td>
<td>NAVI MUTE : Over 2.5V, TEL MUTE : Below 1V</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>ROTARY CW</td>
<td>I</td>
<td>Rotary encoder input</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>AVSS</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>TUN TYPE1</td>
<td>I</td>
<td>E-VOL setting switch</td>
<td>Refer to “TUN TYPE” on the TRUTH TABLE</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>TUN TYPE2</td>
<td>I</td>
<td>E-VOL setting switch</td>
<td>Refer to “TUN TYPE” on the TRUTH TABLE</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>AVREF1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>VFD DATAF</td>
<td>I</td>
<td>Data input from VFD driver</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>VFD DATAS</td>
<td>O</td>
<td>Data output to VFD driver</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>VFD CLK</td>
<td>O</td>
<td>Clock output to VFD driver</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>L</td>
<td>VFD RST</td>
<td>O</td>
<td>Reset output to VFD driver</td>
<td>Display OFF, Key reset, TDF panel OFF : L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Display ON, Key scan : H</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>VFD CE</td>
<td>O</td>
<td>Chip enable output to VFD driver</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>ROTARY CCW</td>
<td>I</td>
<td>Rotary encoder input</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>L</td>
<td>TDF DET</td>
<td>I</td>
<td>TDF panel detection</td>
<td>TDF panel OFF : H, TDF panel ON : L</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>PWIC BEEP</td>
<td>O</td>
<td>Beep output</td>
<td></td>
</tr>
<tr>
<td>16-19</td>
<td></td>
<td>NC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>L</td>
<td>TUN ADJ</td>
<td>I</td>
<td>For adjusting IC10</td>
<td>Adjustment=H, PS1-1,2=L, PS1-3=Hi-Z, PS2-1,2=Hi-Z, TUN DATA, CLK=Hi-Z</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>TUN SD</td>
<td>I</td>
<td>Tuner search stop output</td>
<td>H : Station exists, L : Station does not exist</td>
</tr>
<tr>
<td>22-24</td>
<td></td>
<td>NC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>AUD SDA</td>
<td>I/O</td>
<td>Volume + tuner I2C data input and output</td>
<td></td>
</tr>
</tbody>
</table>
MICROCOMPUTER’S TERMINAL DESCRIPTION

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Active (H/L)</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Application</th>
<th>Processing Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>H</td>
<td>AUD SCL</td>
<td>I/O</td>
<td>Volume + tuner I2C clock input and output</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>H</td>
<td>PWIC STBY</td>
<td>O</td>
<td>Power IC standby output</td>
<td>Power IC ON : H, Power IC OFF : L</td>
</tr>
<tr>
<td>28</td>
<td>H</td>
<td>VOL MUTE</td>
<td>O</td>
<td>E-VOL mute output</td>
<td>L : Mute OFF, Hi-Z : Mute ON</td>
</tr>
<tr>
<td>29</td>
<td>L</td>
<td>PWIC MUTE</td>
<td>O</td>
<td>Power IC mute output</td>
<td>Power OFF : L, Standby : L, Tel mute : L</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>TUN FANC OUT</td>
<td>O</td>
<td>Tuner block (inside the µ-com) check</td>
<td>OK : L, NG : H</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>RESET2</td>
<td>O</td>
<td>Mute for reset</td>
<td>Output L</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>VSS1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>L</td>
<td>ACC DET</td>
<td>I</td>
<td>ACC detection</td>
<td>ACC exists : L, ACC does not exist : H</td>
</tr>
<tr>
<td>36</td>
<td>L</td>
<td>BU DET</td>
<td>I</td>
<td>Momentary power-down detection</td>
<td>BU exists : L, BU does not exist (Momentary power-down) : H</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>PS2-2</td>
<td>O</td>
<td>Power supply control output</td>
<td>Refer to “POWER IC CONTROL” on the TRUTH TABLE</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>PS2-1</td>
<td>O</td>
<td>Power supply control output</td>
<td>Refer to “POWER IC CONTROL” on the TRUTH TABLE</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>PS1-1</td>
<td>O</td>
<td>Power supply control output</td>
<td>Refer to “POWER IC CONTROL” on the TRUTH TABLE</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>PS1-2</td>
<td>O</td>
<td>Power supply control output</td>
<td>Refer to “POWER IC CONTROL” on the TRUTH TABLE</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>PS1-3</td>
<td>O</td>
<td>Power supply control output</td>
<td>Refer to “POWER IC CONTROL” on the TRUTH TABLE</td>
</tr>
<tr>
<td>43,44</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>CD MUTE</td>
<td>I</td>
<td>CD mute request</td>
<td>L : Mute request</td>
</tr>
<tr>
<td>46</td>
<td>L</td>
<td>CD MSTOP</td>
<td>O</td>
<td>CD mecha µ-com stop</td>
<td>H : mecha µ-com operates, L : mecha µ-com is stopped</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>CD LOE LIM SW</td>
<td>I</td>
<td>CD detection (chucking switch)</td>
<td>H : Loading is finished, L : Disc does not exist</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>CD LOEJ</td>
<td>I/O</td>
<td>CD motor control</td>
<td>Refer to “CD MECHA CONTROL OPERATION” on the TRUTH TABLE</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>CD MOTOR</td>
<td>O</td>
<td>CD motor control</td>
<td>Refer to “CD MECHA CONTROL OPERATION” on the TRUTH TABLE</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>L</td>
<td>CD MRST</td>
<td>O</td>
<td>CD mecha µ-com reset</td>
<td>H : Normal condition, L : Reset</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>CD SCL</td>
<td>I/O</td>
<td>CD mecha I2C clock output</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>CD DISC12 SW</td>
<td>I</td>
<td>12cm CD detection</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td>CD LOS SW</td>
<td>I</td>
<td>CD loading detection</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>CD SDA</td>
<td>I/O</td>
<td>CD mecha I2C data input and output</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>OEM DISP CE</td>
<td>I/O</td>
<td>External display chip enable</td>
<td>External display</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td>OEM DISP CLK</td>
<td>I/O</td>
<td>External display clock</td>
<td>External display</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>OEM DISP DATA</td>
<td>I/O</td>
<td>External display chip data</td>
<td>External display</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td>DSI</td>
<td>O</td>
<td>DSI control</td>
<td>DSI ON : H, DSI OFF : L, TDF DET=H (DSI blinks)</td>
</tr>
<tr>
<td>60</td>
<td>L</td>
<td>RESET</td>
<td>I</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>L</td>
<td>PON FL</td>
<td>O</td>
<td>VFD power supply ON</td>
<td>VFD ON : H, VFD OFF : L, TDF DET H (DSI blinks) : L, TDF DET L : H</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td>KEY REQ</td>
<td>I</td>
<td>Communication request from VFD driver</td>
<td>L : Key input</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Microcomputer’s Terminal Description

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Active (H/L)</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Application</th>
<th>Processing Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>I</td>
<td>REMOTE</td>
<td>I</td>
<td>Remote control input</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>I</td>
<td>NC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>I</td>
<td>VSS0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>I</td>
<td>VDD1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>I</td>
<td>X2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>I</td>
<td>X1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>I</td>
<td>TEST</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>I</td>
<td>XT2</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>I</td>
<td>XT1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>I</td>
<td>VDD0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>I</td>
<td>AVDD</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76-78</td>
<td>I</td>
<td>TYPE 3-TYPE 1</td>
<td>I</td>
<td>Destination switch</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>I</td>
<td>NC</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>I</td>
<td>TUN SMETER</td>
<td>I</td>
<td>Tuner S-meter input</td>
<td></td>
</tr>
</tbody>
</table>

TRUTH TABLE

TUN TYPE

<table>
<thead>
<tr>
<th>TYPE 1</th>
<th>TYPE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
</tr>
</tbody>
</table>

General models commercially-designated as pure KENWOOD brand (Initial value)

<table>
<thead>
<tr>
<th>Initial value setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>General models commercially-designated as pure KENWOOD brand (CRSC is changed)</td>
</tr>
</tbody>
</table>

Multi-Path Band-Path Gain=12dB, Multi-Path Charge Current=0.4\(\mu\)A, De-Emphasis=75\(\mu\)S

POWER SUPPLY IC (IC3) CONTROL

<table>
<thead>
<tr>
<th>SEL1 (Pin No. 11)</th>
<th>CD LOEJ</th>
<th>CD MOTOR</th>
<th>CD MECHA OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1-2</td>
<td>L</td>
<td>H</td>
<td>Load</td>
</tr>
<tr>
<td>PS1-3</td>
<td>H</td>
<td>H</td>
<td>Eject</td>
</tr>
<tr>
<td>PS2-1</td>
<td>Hi-Z</td>
<td>L</td>
<td>Stop</td>
</tr>
<tr>
<td>ILLUMI</td>
<td>Hi-Z</td>
<td>H</td>
<td>Brake</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>P-CON</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>P-ANT</td>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

CD MECHA CONTROL OPERATION

<table>
<thead>
<tr>
<th>CD LOEJ</th>
<th>CD MOTOR</th>
<th>CD MECHA OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
<td>Load</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>Eject</td>
</tr>
<tr>
<td>Hi-Z</td>
<td>L</td>
<td>Stop</td>
</tr>
<tr>
<td>Hi-Z</td>
<td>H</td>
<td>Brake</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEL2 (Pin No. 12)</th>
<th>AUDIO</th>
<th>SW5</th>
<th>AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1-1</td>
<td>L</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>PS2-2</td>
<td>L</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
Microcomputer's Terminal Description

CD Mechanism μ-COM: IC2 on X32- (CD Player Unit)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Active (H/L)</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Application</th>
<th>Processing Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>TVD</td>
<td>O</td>
<td>Traverse drive output (PWM output).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>SPL</td>
<td>O</td>
<td>Spindle motor drive output (PWM output).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>No connection.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>PWM</td>
<td>O</td>
<td>Multipurpose PWM output.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>TBAL</td>
<td>O</td>
<td>Tracking balance adjustment output (PWM output).</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>FBAL</td>
<td>O</td>
<td>Focusing balance adjustment output (PWM output).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>NRFDET</td>
<td>I</td>
<td>RF detection signal input.</td>
<td>L: Detection</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>OFT</td>
<td>I</td>
<td>Off-tracking signal input.</td>
<td>H: Detection</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>BDO</td>
<td>I</td>
<td>Drop-out signal input.</td>
<td>H: Detection</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>LDON</td>
<td>O</td>
<td>Laser-on signal output.</td>
<td>H: Focus ON</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>DSLB</td>
<td>O</td>
<td>DSL balance output.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>DVDD1</td>
<td>-</td>
<td>Power supply for digital circuit.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>DVSS1</td>
<td>-</td>
<td>GND for digital circuit.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>AVSS2</td>
<td>-</td>
<td>GND for analog circuit.</td>
<td>For DSL, PLL and A/D converter</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>DSLF</td>
<td>I/O</td>
<td>Loup filter for DSL and bias output for ARF.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>ARF</td>
<td>I</td>
<td>RF signal input.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>RF SW</td>
<td>I</td>
<td>DSL circuit time constant switch.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>PLLF</td>
<td>I/O</td>
<td>Loup filter for PLL.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>PLLF2</td>
<td>I/O</td>
<td>Loup filter character switch for PLL.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>IREF</td>
<td>I</td>
<td>Reference current input.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>RFENV</td>
<td>I</td>
<td>RF envelope signal input.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>TRCRS</td>
<td>I</td>
<td>Tracking cross signal input.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>TE</td>
<td>I</td>
<td>Tracking error signal input.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>FE</td>
<td>I</td>
<td>Focusing error signal input.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>AVDD2</td>
<td>-</td>
<td>Power supply for analog circuit.</td>
<td>For DSL, PLL and A/D converter</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>AVSS1</td>
<td>-</td>
<td>GND for analog circuit.</td>
<td>For Lch/Rch audio output</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>OUTR</td>
<td>O</td>
<td>Rch audio output.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>AVDD1</td>
<td>-</td>
<td>Power supply for analog circuit.</td>
<td>For Lch/Rch audio output</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>OUTL</td>
<td>O</td>
<td>Lch audio output.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>DVSS3</td>
<td>-</td>
<td>GND for digital circuit.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>CSEL</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>ASEL</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>MSEL0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>MSEL1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>No connection.</td>
<td></td>
</tr>
<tr>
<td>36-39</td>
<td></td>
<td>NC</td>
<td>-</td>
<td>No connection.</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>VREFP</td>
<td>-</td>
<td>Reference power supply input for A/D converter.</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>HOT</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MICROCOMPUTER’S TERMINAL DESCRIPTION

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Active (H/L)</th>
<th>Pin Name</th>
<th>I/O</th>
<th>Application</th>
<th>Processing Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td></td>
<td>8EJE SW</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>12EJE/SDET SW</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 44 | | LOE/LIM SW | I | Loading-end detection / Pick-up inner circumference detection. | H : Loading-end detection
| | | | | | L : Pick-up inner circumference detection |
| 45~49 | NC | | - | No connection. | |
| 50 | | DVDD2 | - | Power supply for digital circuit. | |
| 51 | | X1 | I | Main clock input. | |
| 52 | | X2 | O | Main clock output. | |
| 53 | | DVSS2 | - | GND for digital circuit. | |
| 54 | | XSB1 | - | | |
| 55 | | NC | - | No connection. | |
| 56 | | TEST1 | - | Test terminal. Normal condition : “H” fixed | |
| 57 | | TEST2 | - | Test terminal. Normal condition : “H” fixed | |
| 58,59 | NC | | - | No connection. | |
| 60 | | DRV MUTE | O | Driver mute control. | L : Mute ON, H : Mute OFF |
| 61 | L | MUTE L | O | Audio Lch mute output. | |
| 62 | L | MUTE R | O | Audio Rch mute output. | |
| 63 | L | RST | I | LSI reset input. | |
| 64 | | OCD CLK | - | | |
| 65 | L | MSTOP | I | Standby detection. | |
| 66 | | DATA | I/O | I2C bus data line (Communication line to system μ-com). | During serial writer is connected. |
| 67 | | SBIO | I | Data input. | During serial writer is connected. |
| 68 | L | CLK | I/O | I2C bus clock line (Communication line to system μ-com). | During serial writer is connected. |
| 69 | | TX | O | Digital audio interface signal output. | |
| 70 | | NC | - | No connection. | |
| 71 | | XSEL | - | | |
| 72 | | MCNT | I | Loading control / Eject control. | L : OFF (Host control), H : Mecha μ-com control |
| 73 | | P.O | O | Audio & Servo power supply control. | L : Power supply ON, H : Power supply OFF |
| 74,75 | NC | | - | No connection. | |
| 77 | | NC | - | No connection. | |
| 78 | | DVDD3 | - | Power supply for digital circuit. | |
| 79 | | FOD | O | Focusing drive output (PWM output). | |
| 80 | | TRD | O | Tracking drive output (PWM output). | |
TEST MODE

How to enter the test mode
While simultaneously press PRESET “1” key and PRESET “3” key, press “RESET” button.

How to release the test mode
Press “RESET” button. (The release cannot be achieved in the conditions of POWER OFF and ACC OFF.)

Initial conditions of the test mode
- The source is “STANDBY”.
- The displays all lit up.
- The volume is at –10dB (The display shows “30.”)
- LOUD is “OFF”.
- CRSC is “OFF”.
- SYSTEM Q is “NATURAL”.
- BEEP is sounded at all time with the key depressed for less than 1 second.

Special displays when all indicator lights are lighted
When “PRESET” keys are pressed while all indicators for the STANDBY sources are lighted, the following displays will appear.

<table>
<thead>
<tr>
<th>PRESET “key”</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>“1” key</td>
<td>Version display (4 digits : month, date) (4 digits : hour, minute) (Display) : XXXX xxxx</td>
</tr>
<tr>
<td>“2” key</td>
<td>Serial number display (4 digits) (4 digits) (Display) : XXXX xxxx</td>
</tr>
<tr>
<td>“3” key</td>
<td>When pressed for less than 1 second : POWER ON time display (STANDBY source time is not counted.) (Display) : _ _ _ X xxxx MAX 60,000 (hours) * The display is cleared by pressing the key for more than 2 seconds.</td>
</tr>
<tr>
<td>“4” key</td>
<td>When pressed for less than 1 second : CD operation time display (Display) : _ _ _ X xxxx MAX 60,000 (hours) * The display is cleared by pressing the key for more than 2 seconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESET “key”</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>“5” key</td>
<td>When pressed for less than 1 second : CD EJECT number display (Display) : _ _ _ X xxxx MAX 60,000 (times) * The display is cleared by pressing the key for more than 2 seconds.</td>
</tr>
<tr>
<td>“6” key</td>
<td>When pressed for less than 1 second : Panel open/ close number display (Display) : _ _ _ X xxxx MAX 600,000 (times) * The display is cleared by pressing the key for more than 2 seconds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“FM” key</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM CORRECTION version display (Effective : Rxxx (x : number) Not effective (When not able to read) : R – – – Not effective (When version is different) : R✳✳✳</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“AM” key</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC10 adjustment status (Refer to “ADJUSTMENT” on the following page.) Adjustment complete : E2OK Adjustment not completed : E2ER Communication error : ICER * When other than “E2P _ OK _ _”, Pin No. 30 will become “H”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“” key</th>
<th>Display</th>
</tr>
</thead>
</table>
| Mechanism error detection status Communication error → Error No. 1 → Error No. 2 → Error No. 3 → Communication error (Error No. 1 is the most recent error.) Communication OK : ICOK Communication error : ICER Not detected : En – – (n : 1~3) Detected : En ⭐⭐ (⭐⭐ : error code) * The display is cleared by pressing the key for more than 2 seconds.
DC offset error detection confirmation mode

- **Confirmation mode:**
 - While depressing PRESET “3” key and PRESET “6” key simultaneously, press on the “RESET” button.
 - (Display) Detected : DCER
 - Not detected : DCOK
 - By pressing “CLK” key while “DCER” is being displayed, detection status is cleared. This will result in the display of “DCOK”.

- **Release Method:**
 - Press “RESET” button.

Mechanism memory clear confirmation mode

- **Confirmation mode:**
 - While depressing “ATT” key and “Q” key simultaneously, press “RESET” button.
 - (Display) : MCLR
 - Two seconds after the confirmation mode boots up, Mechanism memory clear as a result is displayed.
 - (Display) Clear status display normal completion : CD _ O
 - Clear status display abnormal completion : CD _ –

- **Release Method:**
 - Press “RESET” button.

FM/AM channel space switching

- **When in the conditions of ACC ON and POWER OFF, while depressing PRESET “1” key and PRESET “5” key simultaneously, press “SRC” key.**

REPLACED PARTS ADJUSTMENT ITEMS

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Function / Parts name</th>
<th>1st AM MIX</th>
<th>2nd AM MIX</th>
<th>FM antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC10</td>
<td>E-VOL & TUNER</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>IC11</td>
<td>E2PROM</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>L507</td>
<td>VCO COIL</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>L508</td>
<td>1st AM MIX IFT</td>
<td>YES</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L509</td>
<td>2nd AM MIX IFT</td>
<td>-</td>
<td>YES</td>
<td>-</td>
</tr>
<tr>
<td>L518</td>
<td>FM ANTENNA COIL</td>
<td>-</td>
<td>-</td>
<td>YES</td>
</tr>
<tr>
<td>D504</td>
<td>VARIABLE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>D506</td>
<td>CAPACITANCE DIODE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>X501</td>
<td>CRYSTAL RESONATOR</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

1st AM MIX / 2nd AM MIX ADJUSTMENT

ADJUSTMENT POINT: L508 (1st AM MIX) / L509 (2nd AM MIX)

VOLTAGE VALUE CHECK POINT: S-METER check land (X34)

Adjust so that S-METER voltage value becomes maximum.

SG setting

<table>
<thead>
<tr>
<th>DESTINATION</th>
<th>FREQUENCY</th>
<th>MODULATION</th>
<th>ANTENNA INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>999kHz</td>
<td>OFF</td>
<td>35dBuV (EMF)</td>
</tr>
<tr>
<td>Except Europe</td>
<td>1000kHz</td>
<td>OFF</td>
<td>35dBuV (EMF)</td>
</tr>
</tbody>
</table>

FM ANTENNA ADJUSTMENT

ADJUSTMENT POINT: L518

VOLTAGE VALUE CHECK POINT: S-METER check land (X34)

Adjust so that S-METER voltage value becomes maximum.

SG setting

<table>
<thead>
<tr>
<th>DESTINATION</th>
<th>FREQUENCY</th>
<th>MODULATION</th>
<th>ANTENNA INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>87.5MHz</td>
<td>OFF</td>
<td>5dBuV (LOAD) or 11dBuV (EMF)</td>
</tr>
<tr>
<td>Except Europe</td>
<td>87.9MHz</td>
<td>OFF</td>
<td>5dBuV (LOAD) or 11dBuV (EMF)</td>
</tr>
</tbody>
</table>
Refer to the schematic diagram for the values of resistors and capacitors.
CKDC-395/395A/495
PC BOARD (FOIL SIDE VIEW)

ELECTRIC UNIT X34-3920-1x (J76-0048-12)
Refer to the schematic diagram for the values of resistors and capacitors.
Refer to the schematic diagram for the values of resistors and capacitors.
Refer to the schematic diagram for the values of resistors and capacitors.

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1</td>
<td>5W</td>
</tr>
<tr>
<td>IC3</td>
<td>2W</td>
</tr>
<tr>
<td>Q1</td>
<td>5X</td>
</tr>
<tr>
<td>Q2</td>
<td>4X</td>
</tr>
<tr>
<td>Q3</td>
<td>4W</td>
</tr>
<tr>
<td>Q4</td>
<td>3V</td>
</tr>
<tr>
<td>Q5</td>
<td>5V</td>
</tr>
</tbody>
</table>
CD RECEIVER

CD RECEIVER

14-SEGMENT DISPLAY

CD RECEIVER

7-SEGMENT DISPLAY

MD RECEIVER

CD RECEIVER by VISTEON

CD RECEIVER

14-SEGMENT DISPLAY

CD RECEIVER

14-SEGMENT DISPLAY

CD RECEIVER

7-SEGMENT DISPLAY

MD RECEIVER

CD RECEIVER by VISTEON

CD RECEIVER

14-SEGMENT DISPLAY

CD RECEIVER

14-SEGMENT DISPLAY

MD RECEIVER

CD RECEIVER by VISTEON

CD RECEIVER

14-SEGMENT DISPLAY

MD RECEIVER

CD RECEIVER by VISTEON

CAUTION: For continued safety, replace safety critical components only with manufacturer’s recommended parts (refer to parts list).

Indicates safety critical components. To reduce the risk of electric shock, leakage-current or resistance measurements shall be carried out (exposed parts are acceptably insulated from the supply circuit) before the appliance is returned to the customer.

- DC voltages are as measured with a high impedance voltmeter. Values may vary slightly due to variations between individual instruments or/and units.
CAUTION: For continued safety, replace safety critical components only with manufacturer's recommended parts (refer to parts list).

• DC voltages are as measured with a high impedance voltmeter. Values may vary slightly due to variations between individual instruments or/and units.
Parts with the exploded numbers larger than 700 are not supplied.

* CD MECHANISM OPERATION DESCRIPTION is not in this service manual. Please refer to service manual for X92-4450-0x (B51-7889-00)
EXPLODED VIEW (UNIT)

Parts with the exploded numbers larger than 700 are not supplied.
PARTS LIST

CKDC-395/395A/495

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add</th>
<th>New</th>
<th>Parts No.</th>
<th>Description</th>
<th>Destinaion</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>1C</td>
<td>*</td>
<td>A02-2746-01</td>
<td>PLASTIC CABINET</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>2C</td>
<td>*</td>
<td>A22-2922-13</td>
<td>SUB PANEL ASSY</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>2C</td>
<td>*</td>
<td>A46-1629-1</td>
<td>REAR COVER</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>1D</td>
<td>*</td>
<td>A52-0821-12</td>
<td>TOP PLATE</td>
<td></td>
</tr>
<tr>
<td>PA1</td>
<td>3C</td>
<td>*</td>
<td>A64-3687-02</td>
<td>PANEL ASSY (CKDC-395)</td>
<td>K</td>
</tr>
<tr>
<td>PA1</td>
<td>3C</td>
<td>*</td>
<td>A64-3688-02</td>
<td>PANEL ASSY (CKDC-395A)</td>
<td>K1</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>*</td>
<td>A64-3689-02</td>
<td>PANEL ASSY (CKDC-495)</td>
<td>K2</td>
</tr>
<tr>
<td>209</td>
<td>1C</td>
<td>*</td>
<td>B64-0100-50</td>
<td>WARRANTY CARD</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>3C</td>
<td>*</td>
<td>B19-2355-03</td>
<td>LIGHTING BOARD</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>3C</td>
<td>*</td>
<td>B43-1524-04</td>
<td>BADGE</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>2C</td>
<td></td>
<td>D10-4619-03</td>
<td>LEVER</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>2C</td>
<td></td>
<td>D10-4620-03</td>
<td>LEVER</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>1C</td>
<td></td>
<td>D10-4705-04</td>
<td>LEVER</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>2C</td>
<td></td>
<td>D21-2392-04</td>
<td>SHAFT</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>3C</td>
<td></td>
<td>E29-2027-02</td>
<td>CONDUCTIVE RUBBER</td>
<td></td>
</tr>
<tr>
<td>DC1</td>
<td>1C</td>
<td></td>
<td>E30-6123-15</td>
<td>DC CORD</td>
<td></td>
</tr>
<tr>
<td>FC1</td>
<td>2D</td>
<td></td>
<td>E39-0718-05</td>
<td>FLAT CABLE</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>2D</td>
<td></td>
<td>F52-0023-05</td>
<td>FUSE (MINI BLADE TYPE) (10A)</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>2C</td>
<td></td>
<td>G01-3097-04</td>
<td>TORSION COIL SPRING</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>2C</td>
<td></td>
<td>G01-3154-04</td>
<td>EXTENSION SPRING</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>3C</td>
<td>*</td>
<td>G01-3273-04</td>
<td>COMPRESSION SPRING (RELEASE)</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>3C</td>
<td>*</td>
<td>G01-3274-04</td>
<td>COMPRESSION SPRING (VOL)</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>1C</td>
<td></td>
<td>G11-3654-04</td>
<td>CUSHION</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>3C</td>
<td>*</td>
<td>J19-7097-01</td>
<td>HOLDER</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>1C</td>
<td></td>
<td>J22-0227-03</td>
<td>MOUNTING HARDWARE ASSY</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>3C</td>
<td>*</td>
<td>K24-4397-04</td>
<td>PUSH KNOB (CLK)</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>3C</td>
<td>*</td>
<td>K24-4398-04</td>
<td>PUSH KNOB (EJECT)</td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>3C</td>
<td>*</td>
<td>K24-4399-04</td>
<td>PUSH KNOB (RELEASE)</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>3C</td>
<td>*</td>
<td>K25-1758-03</td>
<td>PUSH KNOB (ATT)</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>3C</td>
<td>*</td>
<td>K25-1759-02</td>
<td>PUSH KNOB (SRC/PRESET/RESET)</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>3C</td>
<td>*</td>
<td>K29-7172-03</td>
<td>KNOB BASE (VOL)</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>3C</td>
<td>*</td>
<td>K29-7173-03</td>
<td>KEY TOP (VOL)</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>3C</td>
<td>*</td>
<td>K29-7174-03</td>
<td>KNOB BASE (FM/AM)</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>3C</td>
<td>*</td>
<td>K29-7175-03</td>
<td>KEY TOP (FM/AM)</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>1C</td>
<td></td>
<td>N84-4016-48</td>
<td>PAN HEAD TAPTITE SCREW</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2C</td>
<td></td>
<td>N29-0205-04</td>
<td>RETAINING RING (1.5)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3C</td>
<td></td>
<td>N80-2006-48</td>
<td>PAN HEAD TAPTITE SCREW</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2C</td>
<td></td>
<td>N80-2008-43</td>
<td>PAN HEAD TAPTITE SCREW</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3D</td>
<td></td>
<td>N83-3005-48</td>
<td>PAN HEAD TAPTITE SCREW</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>2D</td>
<td></td>
<td>N86-2610-48</td>
<td>BINDING HEAD TAPTITE SCREW</td>
<td></td>
</tr>
<tr>
<td>DME1</td>
<td>1D</td>
<td></td>
<td>X92-5230-01</td>
<td>MECHANISM ASSY</td>
<td></td>
</tr>
</tbody>
</table>

SWITCH UNIT (X16-3370-1x)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add</th>
<th>New</th>
<th>Parts No.</th>
<th>Description</th>
<th>Destinaion</th>
</tr>
</thead>
<tbody>
<tr>
<td>D31-33</td>
<td></td>
<td></td>
<td>B30-1534-05</td>
<td>LED (D)</td>
<td>K1</td>
</tr>
<tr>
<td>D31-33</td>
<td></td>
<td></td>
<td>B30-1567-05</td>
<td>LED (RED)</td>
<td>K2</td>
</tr>
<tr>
<td>D34-36</td>
<td></td>
<td></td>
<td>B30-1533-05</td>
<td>LED (PG)</td>
<td>K</td>
</tr>
<tr>
<td>D37-39</td>
<td></td>
<td></td>
<td>B30-1534-05</td>
<td>LED (D)</td>
<td>K1</td>
</tr>
<tr>
<td>D37-39</td>
<td></td>
<td></td>
<td>B30-1534-05</td>
<td>LED (RED)</td>
<td>K2</td>
</tr>
<tr>
<td>D40-42</td>
<td></td>
<td></td>
<td>B30-1533-05</td>
<td>LED (PG)</td>
<td>K</td>
</tr>
<tr>
<td>D43-45</td>
<td></td>
<td></td>
<td>B30-1534-05</td>
<td>LED (D)</td>
<td>K1</td>
</tr>
<tr>
<td>D43-45</td>
<td></td>
<td></td>
<td>B30-1534-05</td>
<td>LED (RED)</td>
<td>K2</td>
</tr>
<tr>
<td>D46-48</td>
<td></td>
<td></td>
<td>B30-1533-05</td>
<td>LED (PG)</td>
<td>K</td>
</tr>
<tr>
<td>D49-51</td>
<td></td>
<td></td>
<td>B30-1534-05</td>
<td>LED (D)</td>
<td>K1</td>
</tr>
<tr>
<td>D70</td>
<td></td>
<td></td>
<td>B30-1567-05</td>
<td>LED (RED)</td>
<td>KK2</td>
</tr>
<tr>
<td>D70</td>
<td></td>
<td></td>
<td>B30-1729-05</td>
<td>LED (BLUE)</td>
<td>K2</td>
</tr>
<tr>
<td>C10</td>
<td></td>
<td></td>
<td>CK73GB1U225K</td>
<td>CHIP C 2.2UF</td>
<td>K</td>
</tr>
<tr>
<td>C11,12</td>
<td></td>
<td></td>
<td>CK73GB1H103K</td>
<td>CHIP C 0.010UF</td>
<td>K</td>
</tr>
<tr>
<td>C15</td>
<td></td>
<td></td>
<td>CC73GB1H1270J</td>
<td>CHIP C 27PF</td>
<td>J</td>
</tr>
<tr>
<td>C21</td>
<td></td>
<td></td>
<td>CK73FB1A225K</td>
<td>CHIP C 2.2UF</td>
<td>K2</td>
</tr>
<tr>
<td>C61-65</td>
<td></td>
<td></td>
<td>CK73GB1H103K</td>
<td>CHIP C 0.010UF</td>
<td>K2</td>
</tr>
<tr>
<td>C68</td>
<td></td>
<td></td>
<td>CK73GB1H1471K</td>
<td>CHIP C 470PF</td>
<td>K</td>
</tr>
<tr>
<td>C69</td>
<td></td>
<td></td>
<td>CK73FB1C105K</td>
<td>CHIP C 1.0UF</td>
<td>K</td>
</tr>
<tr>
<td>C70</td>
<td></td>
<td></td>
<td>CK73GB1H103K</td>
<td>CHIP C 0.010UF</td>
<td>K1</td>
</tr>
</tbody>
</table>

Indicators

- **CKDC-395**
- **K1**: CKDC-395A
- **K2**: CKDC-495
- **K**: Other Areas
- **M**: Without Europe

- **Indicates safety critical components.**

New parts

Parts without **Parts No.** are not supplied.

Les articles non mentionnés dans le **Parts No.** ne sont pas fournis.

Teile ohne **Parts No.** werden nicht geliefert.

K: CKDC-395 **K1**: CKDC-395A **K2**: CKDC-495
(E: Europe K: North America M: Other Areas W: Without Europe)
PARTS LIST

SWITCH UNIT (X16-3370-1x)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>New</th>
<th>Parts No.</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>R98</td>
<td></td>
<td>RKL3GB2A474J</td>
<td>CHIP R 47K J 1/10W</td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td></td>
<td>RKL2-1252-05</td>
<td>CHIP R 0.0OM J 1/16W</td>
<td>K1K2</td>
</tr>
<tr>
<td>W3</td>
<td></td>
<td>RKL2-1252-05</td>
<td>CHIP R 0.0OM J 1/16W</td>
<td></td>
</tr>
<tr>
<td>W5</td>
<td></td>
<td>RKL2-1252-05</td>
<td>CHIP R 0.0OM J 1/16W</td>
<td></td>
</tr>
<tr>
<td>W12,13</td>
<td></td>
<td>RKL2-1252-05</td>
<td>CHIP R 0.0OM J 1/16W</td>
<td></td>
</tr>
<tr>
<td>S12</td>
<td></td>
<td>S70-0106-05</td>
<td>TACT SWITCH</td>
<td></td>
</tr>
<tr>
<td>S11</td>
<td></td>
<td>T99-0457-15</td>
<td>ROTARY ENCODER</td>
<td></td>
</tr>
<tr>
<td>D71-77</td>
<td></td>
<td>UDZS5.6B</td>
<td>ZENER DIODE</td>
<td>K2</td>
</tr>
<tr>
<td>D96</td>
<td></td>
<td>DA04J</td>
<td>DIODE</td>
<td></td>
</tr>
<tr>
<td>ED1</td>
<td></td>
<td>PNA4S22M</td>
<td>ANALOGUE IC</td>
<td>K2</td>
</tr>
<tr>
<td>IC3</td>
<td></td>
<td>ML228GTA</td>
<td>MOS-IC</td>
<td></td>
</tr>
<tr>
<td>IC4</td>
<td></td>
<td>DTA111EE</td>
<td>DIGITAL TRANSISTOR</td>
<td></td>
</tr>
<tr>
<td>Q21</td>
<td></td>
<td>2SA1774</td>
<td>TRANSISTOR</td>
<td></td>
</tr>
<tr>
<td>Q22-24</td>
<td></td>
<td>2SC4081</td>
<td>TRANSISTOR</td>
<td></td>
</tr>
</tbody>
</table>

CD PLAYER UNIT (X32-5750-00)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>New</th>
<th>Parts No.</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td>C63-1215-05</td>
<td>CERAMIC 10UF</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>CK3GB1A229K</td>
<td>CHIP C 2.2UF</td>
<td>K</td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>CK3GB0U105K</td>
<td>CHIP C 1.0UF</td>
<td>K</td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td>CC73GBH1020C</td>
<td>CHIP C 2.0PF</td>
<td>C</td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td>CC73GBH1300</td>
<td>CHIP C 39PF</td>
<td>J</td>
</tr>
<tr>
<td>C7</td>
<td></td>
<td>CK3GB1C104K</td>
<td>CHIP C 0.10UF</td>
<td>K</td>
</tr>
<tr>
<td>C8</td>
<td></td>
<td>CK3GB0U105K</td>
<td>CHIP C 1.0UF</td>
<td>K</td>
</tr>
<tr>
<td>C9</td>
<td></td>
<td>CK3GB1H472K</td>
<td>CHIP C 4700PF</td>
<td>K</td>
</tr>
<tr>
<td>C10</td>
<td></td>
<td>CK3GB1C333K</td>
<td>CHIP C 0.033UF</td>
<td>K</td>
</tr>
<tr>
<td>C11</td>
<td></td>
<td>CK3GB1H682K</td>
<td>CHIP C 6800PF</td>
<td>C</td>
</tr>
<tr>
<td>C12</td>
<td></td>
<td>CK3GB1H332K</td>
<td>CHIP C 3300PF</td>
<td>C</td>
</tr>
<tr>
<td>C13</td>
<td></td>
<td>CC73GBH1271J</td>
<td>CHIP C 270PF</td>
<td>J</td>
</tr>
<tr>
<td>C14</td>
<td></td>
<td>CK3GB1H472K</td>
<td>CHIP C 4700PF</td>
<td>C</td>
</tr>
<tr>
<td>C15</td>
<td></td>
<td>CK3GB1H222K</td>
<td>CHIP C 2200PF</td>
<td>J</td>
</tr>
<tr>
<td>C16</td>
<td></td>
<td>CC73GBH1331J</td>
<td>CHIP C 330PF</td>
<td>J</td>
</tr>
<tr>
<td>C17-18</td>
<td></td>
<td>CK3GB1C104K</td>
<td>CHIP C 0.10UF</td>
<td>K</td>
</tr>
<tr>
<td>C31-34</td>
<td></td>
<td>CK3GB1C104K</td>
<td>CHIP C 0.10UF</td>
<td>K</td>
</tr>
<tr>
<td>C36</td>
<td></td>
<td>CK3FB1A225K</td>
<td>CHIP C 2.2UF</td>
<td>K</td>
</tr>
<tr>
<td>C37-39</td>
<td></td>
<td>CK3GB1H103K</td>
<td>CHIP C 0.010UF</td>
<td>K</td>
</tr>
<tr>
<td>C40</td>
<td></td>
<td>CK3GB1H153K</td>
<td>CHIP C 0.015UF</td>
<td>K</td>
</tr>
<tr>
<td>C41</td>
<td></td>
<td>CK3GB1H102K</td>
<td>CHIP C 1000PF</td>
<td>K</td>
</tr>
<tr>
<td>C42</td>
<td></td>
<td>CK3GB1E473K</td>
<td>CHIP C 0.047UF</td>
<td>K</td>
</tr>
<tr>
<td>C43</td>
<td></td>
<td>CK3GB1H222K</td>
<td>CHIP C 2200PF</td>
<td>J</td>
</tr>
<tr>
<td>C44</td>
<td></td>
<td>CK3GB1H102K</td>
<td>CHIP C 1000PF</td>
<td>K</td>
</tr>
<tr>
<td>C45-47</td>
<td></td>
<td>CK3GB1C104K</td>
<td>CHIP C 0.10UF</td>
<td>K</td>
</tr>
<tr>
<td>C48</td>
<td></td>
<td>CK3GB1H682K</td>
<td>CHIP C 6800PF</td>
<td>K</td>
</tr>
<tr>
<td>C49</td>
<td></td>
<td>CK3GB1H152K</td>
<td>CHIP C 1500PF</td>
<td>K</td>
</tr>
<tr>
<td>C50</td>
<td></td>
<td>CK3GB1H472K</td>
<td>CHIP C 4700PF</td>
<td>K</td>
</tr>
<tr>
<td>C51</td>
<td></td>
<td>CK3GB1H681K</td>
<td>CHIP C 6800PF</td>
<td>K</td>
</tr>
<tr>
<td>C52</td>
<td></td>
<td>CK3GB1C104K</td>
<td>CHIP C 0.10UF</td>
<td>J</td>
</tr>
<tr>
<td>C61</td>
<td></td>
<td>CK3FB1A225K</td>
<td>CHIP C 2.2UF</td>
<td>K</td>
</tr>
<tr>
<td>C62</td>
<td></td>
<td>CK3GB1C104K</td>
<td>CHIP C 0.10UF</td>
<td>K</td>
</tr>
<tr>
<td>C71-72</td>
<td></td>
<td>CK3GB1H471K</td>
<td>CHIP C 470PF</td>
<td>K</td>
</tr>
<tr>
<td>C73-74</td>
<td></td>
<td>CC73GBH1680</td>
<td>CHIP C 68PF</td>
<td>J</td>
</tr>
<tr>
<td>C75,76</td>
<td></td>
<td>CK3GB1H222K</td>
<td>CHIP C 2200PF</td>
<td>K</td>
</tr>
<tr>
<td>C77,78</td>
<td></td>
<td>CK3GB1C104K</td>
<td>CHIP C 0.10UF</td>
<td>K</td>
</tr>
<tr>
<td>C100-102</td>
<td></td>
<td>CK3GB1H102K</td>
<td>CHIP C 1000PF</td>
<td>K</td>
</tr>
</tbody>
</table>

New Parts No. Description Destination

- **CKDC-395/395A/495**
- **Indicates safety critical components.**

Ref. No. : CKDC-395 | **K1** : CKDC-395A | **K2** : CKDC-495

E : Europe | **K** : North America | **M** : Other Areas | **W** : Without Europe
Parts List

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add</th>
<th>New</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td>DIODE</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td>DIODE</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td>ANALOGUE IC</td>
<td></td>
</tr>
<tr>
<td>D4a</td>
<td></td>
<td></td>
<td>MOS-IC</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Unit (X34-3920-1x)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add</th>
<th>New</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1,2</td>
<td></td>
<td></td>
<td>ELECTRO 0.47UF 50WV</td>
<td></td>
</tr>
<tr>
<td>C3-6</td>
<td></td>
<td></td>
<td>ELECTRO 0.22UF 50WV</td>
<td></td>
</tr>
<tr>
<td>C51</td>
<td></td>
<td></td>
<td>ELECTRO 3300UF 16W</td>
<td></td>
</tr>
<tr>
<td>C52,55</td>
<td></td>
<td></td>
<td>CHIP C 1000PF K</td>
<td></td>
</tr>
<tr>
<td>C71</td>
<td></td>
<td></td>
<td>CHIP C 0.010UF K</td>
<td></td>
</tr>
<tr>
<td>C72</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C74-77</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C78-79</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C80,81</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C86,87</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C90,95</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C16,17</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C201</td>
<td></td>
<td></td>
<td>CHIP C 0.010UF K</td>
<td></td>
</tr>
<tr>
<td>C205</td>
<td></td>
<td></td>
<td>CHIP C 0.010UF K</td>
<td></td>
</tr>
<tr>
<td>C206</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C257</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C30,31</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C401</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C402</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C403</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C410</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C411</td>
<td></td>
<td></td>
<td>CHIP C 0.20UF K</td>
<td></td>
</tr>
<tr>
<td>C420</td>
<td></td>
<td></td>
<td>CHIP C 1000PF J</td>
<td></td>
</tr>
<tr>
<td>C422</td>
<td></td>
<td></td>
<td>CHIP C 1000PF J</td>
<td></td>
</tr>
<tr>
<td>C502</td>
<td></td>
<td></td>
<td>CHIP C 1500PF K</td>
<td></td>
</tr>
<tr>
<td>C503</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C504</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C505</td>
<td></td>
<td></td>
<td>CHIP C 0.68UF K</td>
<td></td>
</tr>
<tr>
<td>C506</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C507-508</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C509</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C510</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C511</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C512</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
<tr>
<td>C513,514</td>
<td></td>
<td></td>
<td>CHIP C 0.100UF K</td>
<td></td>
</tr>
</tbody>
</table>

Ref. No. Add

- **CKDC-395**
- **K1**: CKDC-395
- **K2**: CKDC-495
- **K** : CKDC-495
- **(E)** : Europe
- **(K)** : North America
- **(M)** : Other Areas
- **(W)** : Without Europe
- **Δ** : Indicates safety critical components.
<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add New</th>
<th>Parts No.</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF51-53</td>
<td></td>
<td>L72-080-05</td>
<td>CERAMIC FILTER</td>
<td></td>
</tr>
<tr>
<td>CF54</td>
<td></td>
<td>L72-084-05</td>
<td>CERAMIC FILTER</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>L33-1978-05</td>
<td>CHOKE COIL</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>L33-2260-05</td>
<td>CHOKE COIL</td>
<td></td>
</tr>
<tr>
<td>L51</td>
<td></td>
<td>L33-2289-05</td>
<td>CHOKE COIL ASSY</td>
<td></td>
</tr>
<tr>
<td>L61</td>
<td></td>
<td>L40-4795-91</td>
<td>SMALL FIXED INDUCTOR (4.7UH)</td>
<td></td>
</tr>
<tr>
<td>L501</td>
<td></td>
<td>L40-4651-58</td>
<td>SMALL FIXED INDUCTOR (6.8UH)</td>
<td></td>
</tr>
<tr>
<td>L502</td>
<td></td>
<td>L40-3301-58</td>
<td>SMALL FIXED INDUCTOR (33UH)</td>
<td></td>
</tr>
<tr>
<td>L503</td>
<td></td>
<td>L40-1021-56</td>
<td>SMALL FIXED INDUCTOR (10UH)</td>
<td></td>
</tr>
<tr>
<td>L504</td>
<td></td>
<td>L40-1011-58</td>
<td>SMALL FIXED INDUCTOR (100UH)</td>
<td></td>
</tr>
<tr>
<td>L505</td>
<td></td>
<td>L40-3381-58</td>
<td>SMALL FIXED INDUCTOR (0.33UH)</td>
<td></td>
</tr>
<tr>
<td>L506</td>
<td></td>
<td>L3-0977-15</td>
<td>FM-RF COIL</td>
<td></td>
</tr>
<tr>
<td>L507</td>
<td></td>
<td>L3-0941-15</td>
<td>FM OSCILLATING COIL</td>
<td></td>
</tr>
<tr>
<td>L508</td>
<td></td>
<td>L3-0776-15</td>
<td>FM IFT</td>
<td></td>
</tr>
<tr>
<td>L509</td>
<td></td>
<td>L3-0777-15</td>
<td>AM IFT</td>
<td></td>
</tr>
<tr>
<td>L518</td>
<td></td>
<td>L3-0976-15</td>
<td>FM-RF COIL</td>
<td></td>
</tr>
<tr>
<td>L520</td>
<td></td>
<td>L40-3381-58</td>
<td>SMALL FIXED INDUCTOR (0.33UH)</td>
<td></td>
</tr>
<tr>
<td>L521</td>
<td></td>
<td>L40-1073-72</td>
<td>SMALL FIXED INDUCTOR (10UH)</td>
<td></td>
</tr>
<tr>
<td>L600</td>
<td></td>
<td>L32-0607-05</td>
<td>CHIP FERRITE</td>
<td></td>
</tr>
<tr>
<td>L601,602</td>
<td></td>
<td>L32-0397-05</td>
<td>CHIP FERRITE</td>
<td></td>
</tr>
<tr>
<td>L604,605</td>
<td></td>
<td>L32-0609-05</td>
<td>CHIP FERRITE</td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td></td>
<td>L78-0879-05</td>
<td>RESONATOR (10.0MHZ)</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td></td>
<td>L77-2793-05</td>
<td>CRYSTAL RESONATOR (32.768KHZ)</td>
<td></td>
</tr>
<tr>
<td>X501</td>
<td></td>
<td>L77-2707-05</td>
<td>CRYSTAL RESONATOR (102.500MHZ)</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>2D</td>
<td>N80-3010-48</td>
<td>PAN HEAD TAPITTE SCREW</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>2D</td>
<td>N83-3005-48</td>
<td>PAN HEAD TAPITTE SCREW</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>2D</td>
<td>N83-2002-48</td>
<td>PAN HEAD TAPITTE SCREW</td>
<td></td>
</tr>
<tr>
<td>J3</td>
<td>3D</td>
<td>N86-2606-48</td>
<td>BINDING HEAD TAPITTE SCREW</td>
<td></td>
</tr>
<tr>
<td>R21</td>
<td></td>
<td>RD14BB21C152J</td>
<td>RD</td>
<td>1.5K J 1/6W</td>
</tr>
<tr>
<td>R51</td>
<td></td>
<td>RK73FB2E688J</td>
<td>CHIP R</td>
<td>68K J 1/8W</td>
</tr>
<tr>
<td>R52</td>
<td></td>
<td>RK73GB2A393J</td>
<td>CHIP R</td>
<td>39K J 1/10W</td>
</tr>
<tr>
<td>R53</td>
<td></td>
<td>RK73GB2A104J</td>
<td>CHIP R</td>
<td>100K J 1/10W</td>
</tr>
<tr>
<td>R54</td>
<td></td>
<td>RK73FB2B203J</td>
<td>CHIP R</td>
<td>20K J 1/8W</td>
</tr>
<tr>
<td>R55,56</td>
<td></td>
<td>RK73GB2A103J</td>
<td>CHIP R</td>
<td>10K J 1/10W</td>
</tr>
<tr>
<td>R57</td>
<td></td>
<td>RK73GB2A223J</td>
<td>CHIP R</td>
<td>22K J 1/10W</td>
</tr>
<tr>
<td>R58</td>
<td></td>
<td>RD14DB2H332J</td>
<td>SMALL-RD</td>
<td>3.3K J 1/2W</td>
</tr>
<tr>
<td>R59</td>
<td></td>
<td>RD14BB2C332J</td>
<td>RD</td>
<td>33K J 1/6W</td>
</tr>
<tr>
<td>R60</td>
<td></td>
<td>RK73GB2A103J</td>
<td>CHIP R</td>
<td>10K J 1/10W</td>
</tr>
<tr>
<td>R61</td>
<td></td>
<td>RK73GB2A223J</td>
<td>CHIP R</td>
<td>22K J 1/10W</td>
</tr>
<tr>
<td>R72</td>
<td></td>
<td>RD14BB2C472J</td>
<td>RD</td>
<td>4.7K J 1/6W</td>
</tr>
<tr>
<td>R75-78</td>
<td></td>
<td>RK73GB2A103J</td>
<td>CHIP R</td>
<td>10K J 1/10W</td>
</tr>
<tr>
<td>R81</td>
<td></td>
<td>RD14BB2C103J</td>
<td>RD</td>
<td>10K J 1/6W</td>
</tr>
<tr>
<td>R82</td>
<td></td>
<td>RK73GB2A223J</td>
<td>CHIP R</td>
<td>22K J 1/10W</td>
</tr>
<tr>
<td>R83</td>
<td></td>
<td>RK73GB2A473J</td>
<td>CHIP R</td>
<td>47K J 1/10W</td>
</tr>
<tr>
<td>R85</td>
<td></td>
<td>RK73GB2A104J</td>
<td>CHIP R</td>
<td>1.0 J 1/10W</td>
</tr>
<tr>
<td>R86</td>
<td></td>
<td>RK73EB2E1R0J</td>
<td>CHIP R</td>
<td>1.0 J 1/4W</td>
</tr>
<tr>
<td>R87,88</td>
<td></td>
<td>RK73GB2A1R0J</td>
<td>CHIP R</td>
<td>1.0 J 1/10W</td>
</tr>
<tr>
<td>R90</td>
<td></td>
<td>RK73GB2A1R0J</td>
<td>CHIP R</td>
<td>1.0 J 1/10W</td>
</tr>
<tr>
<td>R96</td>
<td></td>
<td>RK73GB2A273D</td>
<td>CHIP R</td>
<td>27K J 1/10W</td>
</tr>
<tr>
<td>R97</td>
<td></td>
<td>RK73GB2A332D</td>
<td>CHIP R</td>
<td>3.3K J 1/10W</td>
</tr>
<tr>
<td>R98</td>
<td></td>
<td>RK73EB2E102J</td>
<td>CHIP R</td>
<td>1.0K J 1/4W</td>
</tr>
<tr>
<td>R99</td>
<td></td>
<td>RK73GB2A104J</td>
<td>CHIP R</td>
<td>100K J 1/10W</td>
</tr>
<tr>
<td>R100</td>
<td></td>
<td>RK73GB2A272J</td>
<td>CHIP R</td>
<td>2.7K J 1/10W</td>
</tr>
<tr>
<td>R130,131</td>
<td></td>
<td>RK73EB2E4R7J</td>
<td>CHIP R</td>
<td>4.7 J 1/4W</td>
</tr>
</tbody>
</table>

Indicates safety critical components.
<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add</th>
<th>New</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>R456</td>
<td></td>
<td></td>
<td>RK73GBA2A10J4</td>
<td>CHIP R 100K J 1/10W</td>
</tr>
<tr>
<td>R457</td>
<td></td>
<td></td>
<td>RK73GBA2A10J3</td>
<td>CHIP R 10K J 1/10W</td>
</tr>
<tr>
<td>R471</td>
<td></td>
<td></td>
<td>RK73GBA2A10J3</td>
<td>CHIP R 10K J 1/10W</td>
</tr>
<tr>
<td>R501</td>
<td></td>
<td></td>
<td>RK73GBA68J2</td>
<td>CHIP R 6.8K J 1/10W</td>
</tr>
<tr>
<td>R502.503</td>
<td></td>
<td></td>
<td>RK73GBA222J</td>
<td>CHIP R 2.2K J 1/10W</td>
</tr>
<tr>
<td>R504</td>
<td></td>
<td></td>
<td>RK73GBA447J</td>
<td>CHIP R 4.7 J 1/10W</td>
</tr>
<tr>
<td>R505</td>
<td></td>
<td></td>
<td>RK73GBA102J</td>
<td>CHIP R 1.0K J 1/10W</td>
</tr>
<tr>
<td>R506</td>
<td></td>
<td></td>
<td>RK73GBA105J</td>
<td>CHIP R 1.0M J 1/10W</td>
</tr>
<tr>
<td>R507</td>
<td></td>
<td></td>
<td>RK73GBA10J2</td>
<td>CHIP R 1.0K J 1/10W</td>
</tr>
<tr>
<td>R520</td>
<td></td>
<td></td>
<td>RK73GBA22J1</td>
<td>CHIP R 220 J 1/10W</td>
</tr>
<tr>
<td>R521</td>
<td></td>
<td></td>
<td>RK73GBA152J</td>
<td>CHIP R 1.5K J 1/10W</td>
</tr>
<tr>
<td>R522</td>
<td></td>
<td></td>
<td>RK73GBA223J</td>
<td>CHIP R 22K J 1/10W</td>
</tr>
<tr>
<td>R523</td>
<td></td>
<td></td>
<td>RK73GBA100J</td>
<td>CHIP R 10 J 1/10W</td>
</tr>
<tr>
<td>R543</td>
<td></td>
<td></td>
<td>RK73GBA56J2</td>
<td>CHIP R 5.6K J 1/10W</td>
</tr>
<tr>
<td>R544</td>
<td></td>
<td></td>
<td>RD148BC222J</td>
<td>RD 2.2K J 1/8W</td>
</tr>
<tr>
<td>R545</td>
<td></td>
<td></td>
<td>RK73GBA33J3</td>
<td>CHIP R 33K J 1/10W</td>
</tr>
<tr>
<td>R546</td>
<td></td>
<td></td>
<td>RK73GBA443J</td>
<td>CHIP R 4.3K J 1/10W</td>
</tr>
<tr>
<td>R547</td>
<td></td>
<td></td>
<td>RK73GBA472J</td>
<td>CHIP R 4.7K J 1/10W</td>
</tr>
<tr>
<td>R562</td>
<td></td>
<td></td>
<td>RK73GBA106J</td>
<td>CHIP R 10M J 1/10W</td>
</tr>
<tr>
<td>R565</td>
<td></td>
<td></td>
<td>RK73GBA394J</td>
<td>CHIP R 390K J 1/10W</td>
</tr>
<tr>
<td>R566.567</td>
<td></td>
<td></td>
<td>RK73GBA210J2</td>
<td>CHIP R 1.0K J 1/10W</td>
</tr>
<tr>
<td>R589</td>
<td></td>
<td></td>
<td>RK73GBA473J</td>
<td>CHIP R 47K J 1/10W</td>
</tr>
<tr>
<td>R590</td>
<td></td>
<td></td>
<td>RK73GBA103J</td>
<td>CHIP R 10K J 1/10W</td>
</tr>
<tr>
<td>R591</td>
<td></td>
<td></td>
<td>RK73GBA513J</td>
<td>CHIP R 51K J 1/10W</td>
</tr>
<tr>
<td>R592</td>
<td></td>
<td></td>
<td>RK73GBA223J</td>
<td>CHIP R 22K J 1/10W</td>
</tr>
<tr>
<td>R594</td>
<td></td>
<td></td>
<td>RK73GBE2100J</td>
<td>CHIP R 10 J 1/4W</td>
</tr>
<tr>
<td>R596-598</td>
<td></td>
<td></td>
<td>RD148BC100J</td>
<td>RD 10 J 1/8W</td>
</tr>
<tr>
<td>R599</td>
<td></td>
<td></td>
<td>RK73GBA220J</td>
<td>CHIP R 22 J 1/10W</td>
</tr>
<tr>
<td>R600</td>
<td></td>
<td></td>
<td>RD148BC22RJ</td>
<td>RD 2.2 J 1/8W</td>
</tr>
<tr>
<td>R601</td>
<td></td>
<td></td>
<td>RD148BC10RJ</td>
<td>RD 1.0 J 1/8W</td>
</tr>
<tr>
<td>R602</td>
<td></td>
<td></td>
<td>RK73GBA122J</td>
<td>CHIP R 1.2K J 1/10W</td>
</tr>
<tr>
<td>R603</td>
<td></td>
<td></td>
<td>RK73GBA560J</td>
<td>CHIP R 56 J 1/10W</td>
</tr>
<tr>
<td>R605.606</td>
<td></td>
<td></td>
<td>RK73GBA100J</td>
<td>CHIP R 10 J 1/10W</td>
</tr>
<tr>
<td>W53</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W58-60</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W61-63</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W64</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W65-66</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W67-68</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W71</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W72</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W73</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W75</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W76</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W78</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W79-80</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W81-82</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W83</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W84</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W85</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W86</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W87</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W88.89</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W90-91</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W92</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W93</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W96-98</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add</th>
<th>New</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>W99</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W102</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W506</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W504</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W604.605</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W802</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W803</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W804.805</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W807</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W808</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W810</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W812</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W814</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W820</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W826</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W831</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W832</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
<tr>
<td>W840</td>
<td></td>
<td></td>
<td>R92-1252-05</td>
<td>CHIP R 0 OHM J 1/16W</td>
</tr>
<tr>
<td>W841.842</td>
<td></td>
<td></td>
<td>R92-2053-05</td>
<td>CHIP R 0 OHM J 1/8W</td>
</tr>
</tbody>
</table>

- **K**: CKDC-395
- **K1**: CKDC-395A
- **K2**: CKDC-495
- **E**: Europe
- **K**: North America
- **M**: Other Areas
- **W**: Without Europe

Indicates safety critical components.
PARTS LIST

ELECTRIC UNIT (X34-3920-1x)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Add</th>
<th>New</th>
<th>Parts No.</th>
<th>Description</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q330</td>
<td></td>
<td></td>
<td>DA124EUA</td>
<td>DIGITAL TRANSISTOR</td>
<td></td>
</tr>
<tr>
<td>Q351,352</td>
<td></td>
<td></td>
<td>DT1431UA</td>
<td>DIGITAL TRANSISTOR</td>
<td></td>
</tr>
<tr>
<td>Q501</td>
<td></td>
<td></td>
<td>HNSG01J(BL)-F</td>
<td>TRANSISTOR</td>
<td></td>
</tr>
<tr>
<td>TH1</td>
<td></td>
<td></td>
<td>PFRF1BE471OB2</td>
<td>POSITIVE RESISTOR</td>
<td></td>
</tr>
</tbody>
</table>

MECHANISM ASSY (X92-5230-01)

| | | | | | |
|---|---|---|---|---|
| MECHANISM ASSY | | | | | |
| 2 | 1B | A10-5093-32 | CHASSIS | | |
| 5 | 2B | D10-4785-63 | ARM ASSY | | |
| 8 | 2A | D10-4787-63 | LEVER ASSY | | |
| 10 | 2A | D10-4581-13 | ARM | | |
| 11 | 2A | D10-4582-13 | ARM | | |
| 12 | 3A | D10-4583-03 | ARM | | |
| 13 | 3A | D10-4584-03 | ARM | | |
| 14 | 3B | D10-4585-03 | ARM | | |
| 15 | 2A | D10-4792-13 | SLIDER | | |
| 16 | 3B | D10-4784-42 | SLIDER | | |
| 17 | 2B | D10-4588-13 | SLIDER | | |
| 18 | 2B | D10-4595-04 | ARM | | |
| 19 | 3B | D10-4596-24 | ARM | | |
| 22 | 2A | D13-2151-04 | GEAR | | |
| 23 | 2B | D13-2152-04 | GEAR | | |
| 24 | 3B | D13-2153-04 | GEAR | | |
| 25 | 3B | D13-2154-04 | GEAR | | |
| 26 | 3B | D13-2155-04 | WORM | | |
| 27 | 2B | D13-2156-14 | GEAR | | |
| 28 | 3B | D13-2157-04 | GEAR | | |
| 29 | 2B | D13-2158-04 | GEAR | | |
| 30 | 2B | D13-2168-04 | GEAR | | |
| 31 | 3B | D13-2171-04 | GEAR | | |
| 32 | 1B | D13-2172-13 | RACK (GEAR) | | |
| 33 | 2A | D14-0759-04 | ROLLER | | |
| 35 | 2B | D21-2382-04 | SHAFT | | |
| 36 | 1A | D23-0954-04 | RETAINER | | |
| 37 | 1B | D39-0260-05 | DAMPER | | |
| 38 | 2B | G01-3072-04 | EXTENSION SPRING | | |
| 39 | 2A | G01-3073-04 | TORSION COIL SPRING | | |
| 40 | 2A | G01-3074-04 | EXTENSION SPRING | | |
| 41 | 2B | G01-3075-14 | EXTENSION SPRING | | |
| 42 | 2A | G01-3076-04 | EXTENSION SPRING | | |
| 43 | 1B | G01-3077-14 | EXTENSION SPRING | | |
| 44 | 2B | G02-1399-04 | FLAT SPRING | | |
| 45 | 2B | G02-1408-04 | FLAT SPRING | | |
| 51 | 1A | J22-0064-23 | MOUNTING HARDWARE ASSY | | |
| 52 | 3B | J21-9677-22 | MOUNTING HARDWARE | | |
| 53 | 1B | J21-9678-13 | MOUNTING HARDWARE | | |
| 55 | 1A | J90-1078-14 | GUIDE ASSY | | |
| 56 | 1B | J90-1023-03 | GUIDE | | |
| DFPC1 | 3A | J84-0141-05 | FPC (16PIN) | | |

ELECTRIC UNIT

- **K**: CKDC-395
- **K1**: CKDC-395A
- **K2**: CKDC-495
- **E**: Europe
- **K**: North America
- **M**: Other Areas
- **W**: Without Europe

△ Indicates safety critical components.
CKDC-395/395A/495

SPECIFICATIONS

FM
Frequency Range (Frequency Step) 87.9MHz~107.9MHz (200kHz)
Channel Space Selection ... 50kHz/200kHz
Usable Sensitivity (S/N : 30dB) ... 9.3dBf (0.8µV/75Ω)
Quieting Sensitivity (S/N : 50dB) 15.2dBf (1.6µV/75Ω)
Frequency Response (±3.0dB) ... 30Hz~15kHz
S/N .. 70dB (MONO)
Selectivity .. ≥80dB (±400kHz)
Stereo Separation ... 40dB (1kHz)

AM
Frequency Range (Frequency Step) 530kHz~1700kHz (10kHz)
Channel Space Selection ... 9kHz/10kHz
Usable Sensitivity (S/N : 20dB) ... 28dBµV (25µV)

CD
Laser Diode ... GaAlAs
Digital Filter (D/A) ... 8 Times Over Sampling
D/A Converter ... 1 Bit
Spindle Speed ... 500rpm~200rpm (CLV)
Wow & Flutter ... Below Measurable Limit
Frequency Response ... 10Hz~20kHz (±1dB)
Total Harmonic Distortion .. 0.01% (1kHz)
S/N Ratio ... 93dB (1kHz)
Dynamic Range .. 93dB
Channel Separation ... 85dB
Preout Level / Load ... 2000mV/10kΩ (CD)
Preout Impedance .. ≤600Ω

AMPLIFIER
Maximum Power .. 45W x 4
Full Bandwidth Power (at less than 1% THD) 22W x 4

TONE
Bass .. 100Hz±10dB
Middle .. 1kHz±10dB
Treble .. 10kHz±10dB

GENERAL
Operating Voltage (11V~16V allowable) 14.4V
Current Consumption ... 10A
Installation Size (Width) .. 182mm (7-3/16 inch)
(Height) .. 53mm (2-1/16 inch)
(Depth) .. 155mm (6-1/10 inch)
Weight .. 1.40kg (3.1 lbs)

KENWOOD follows a policy of continuous advancements in development.
For this reason specifications may be changed without notice.