WOW AND FLUTTER
PLEURAGE ET SCINTILLEMENT ≤0.05 %

LOCK
VERROUILLAGE

STOP
ARRÊT

220P430 II
220P401 II
220P412 II
220P422 II

110-127-220-240V
50-60Hz
P=5W

16L98B12

PHILIPS
MECHANICAL ADJUSTMENTS
REGLAGES D'ORDER MECANIQUE

Fig. 2

LIFT MANUAL
LEVIER MANUEL

Fig. 3

CS 64 360
BOWDEN CABLE POS. 104
CABLE BOWDEN POS. 104

104
93
110
111
114

A
0-0.5mm

KNOB 121
BOUTON 121
POSITION ▼

Fig. 4

FREE RUNNING P.U. ARM POS. 116
LIBERATION DU BRAS LECTURE POS. 116

89
510
0.8mm

142
509
152

A

LIFT IN POSITION ▼
P.U. ARM ON REST
LEVIER EN POSITION ▼
BRAS DE LECTURE SUR REPOSE-BRAS

Fig. 5
ELEKTRISCHE EINSTELLUNGEN

1. Drehzahl (R490, R492)

2. Automatische Abschaltung (R495, R496)
 a. Wenn der Tonarm 116 auf dem Tonarmträger 118 aufliegt und der Apparat in der Stellung 33 1/3 oder 45 U./min steht, soll die Spannung am LDR (R499) 3 ± 0,2 V betragen. Einstellung erfolgt mit R495. Die Speisespannung muss hierbei 10 V betragen.
 b. Wenn die Nadel des Tonkopfes sich 60 mm von der Mitte des Plattentellers befindet, muss die Spannung am LDR (R499) 4 ± 0,1 V betragen. Einstellung erfolgt mit der Sicherungsschraube M3x16 in der Bügelleinheit 509/510.
 c. Der Abstand zwischen dem Film (über dem LDR R499) und dem Abschaltbügel 509 muss zwischen 0,5 und 2 mm betragen. Einstellung erfolgt durch geringes Verbiegen des Abschaltbügels 509.
 d. Bei einer Schallplatte mit einer Steigung von 1 mm darf der Apparat nicht abschalten, ehe sich die Nadel bis auf 48 mm von der Mitte des Plattentellers befindet. Auch muss bei einer Schallplatte mit einer Steigung von 2 mm der Apparat abschalten, wenn sich die Nadel auf 60 bis 55 mm von der Mitte des Plattentellers befindet. Kontrolle mit Hilfe der Testplatte 4822 397 30019. Einstellung mit R496.

 Achtung:
 Lichteinfall auf den LDR von aussen her ist zu vermeiden.

3. Mindestwellenspannung am Motor (R494)
 Den Apparat in die Stellung 33 1/3 U./min bringen und den Tonarm am Anfang einer 30-cm-Schallplatte aufsetzen. Mit Hilfe eines Oszillographen die Welligkeit am Motor messen. R494 jetzt so einstellen, dass diese Welligkeit minimal ist. Sie muss 30 mV unterschreiten.

4. Abgleichen des "lock range" IC441, IC446 (R493)
 a. b:TS462 an legen.
 b. Dem Punkt 141C441 eine Rechteckspannung von 10 V, 140 Hz zuführen.
 c. Das Einstellpotentiometer R493 ganz auf links drehen.
 d. Die Spannung am Punkt 31C446c messen; sie muss jetzt 0 V betragen.
 e. Das Einstellpotentiometer R493 auf rechts drehen, bis der Punkt 31C446 gerade 10 V hoch wird und bleibt.
1. Apparat spricht nicht an beim Berühren der Berührungs-
taste 33/45.

2. Kein Aufliehten der 33-U./min-LED 485, der Motor läuft bei 45 U./min nach der Berührung der Berührungs-
taste "33 U./min".

 Apparat arbeitet übrigens einwandfrei.

 Apparat arbeitet übrigens einwandfrei.

5. Nach der Betätigung der Berührungsstache "45 U./
 min" leuchtet LED 485 (33 U./min) auf und die Dreh-
 geschwindigkeit beträgt 33 U./min.

6. Nach der Betätigung der Berührungsstache "45 U./
 min" leuchten LEDn "33 U./min" und "45 U./
 min" beide auf, jedoch beträgt die Drehgeschwindigkeit des
 Apparats 33 U./min.

7. Nach der Betätigung der Berührungsstache "33 U./
 min" leuchten die LEDn für 33 und 45 U./min beide auf.
 Die Drehgeschwindigkeit des Apparats ist tatsächlich
 33 U./min.

8. Nach der Betätigung der Berührungsstache "33 U./
 min", oder "45 U./min" leuchtet die entsprechende LED
 auf, aber es liegt beim Apparat die andere Drehge-
 schwindigkeit vor.

9. Beim Ablauf der Platte bleibt der Arm auf der Platte
 und der Motor setzt nicht aus.

+1 (6,8 V) prüfen
+1 nicht vorhanden: D470, D471, F405 und T405
kontrollieren,
+1 vorhanden: +2 (10 V) prüfen,
+2 nicht vorhanden: IC427b, TS459, TS458, TS457 und
IC429 kontrollieren. +2 vorhanden: IC427c, IC427d,
IC430a und IC430b kontrollieren.

IC427c, IC427d, IC430a, IC430b und TS461
kontrollieren.

LED 485 kontrollieren.

LED 484 und TS460 kontrollieren.

IC427c, IC427d, IC430a, IC430b und TS461
kontrollieren.

TS461 kontrollieren.

TS460 kontrollieren.

IC451d und IC438 kontrollieren

LDR-R499, TS464 und TS466 kontrollieren.
Punkt 2 der "Elektrischen Einstellungen" (Automatische
Abschaltung) kontrollieren.

FEHLER IM BEDIENUNGSSTEIL

10. Apparat arbeitet schon in der Stellung "Pitch",
 jedoch nicht in der Stellung "Crystal".

11. Apparat arbeitet in der Stellung "Crystal", jedoch
 nicht in der Stellung "Pitch".

12. Apparat arbeitet in der Stellung "Pitch" bei 33 U./min,
 aber nicht in der Stellung "Pitch" bei 45 U./min.

13. Apparat arbeitet in der Stellung "Pitch" bei 45 U./min,
 aber nicht in der Stellung "Pitch" bei 33 U./min.

14. Apparat arbeitet in der Stellung "Crystal" bei
 45 U./min, aber nicht in der Stellung "Crystal" bei
 33 U./min.

15. Apparat arbeitet in der Stellung "Crystal" und 45 U./min bringen.

 Apparat in die Stellung "Crystal" und 45 U./min bringen.
 16, 14, 4, 2 und 1
kontrollieren.

Apparat in die Stellung "Pitch" und 45 U/min, bringen.
15, 13 und 12 kontrollieren.

Apparat in die Stellung "Pitch" und 45 U./min bringen.
13 und 9 kontrollieren.

Apparat in die Stellung "Pitch" und 33 U./min bringen.
14, 6, 5 und 3 kontrollieren.

Apparat in die Stellung "Crystal" und 33 U./min bringen.
14, 6, 5 und 3 kontrollieren.

CS 64 424

17. Wenn man in der Stellung "Pitch" die Feinregelung verdreht, dauert es etwa 3 Sekunden, bevor die Geschwindigkeitsänderung an der Anzeige sichtbar wird.

18. Apparat arbeitet einwandfrei in der Stellung 33 bzw. 45 U./min, aber bei 33 oder 45 U./min gibt die Anzeige die Drehzahl nicht wieder.

19. Apparat arbeitet nicht, unregelmäßig oder nicht mit der entsprechenden Drehzahl sowohl in der Stellung "Pitch" als auch in der Stellung "Crystal".

20. Apparat arbeitet einwandfrei, jedoch gibt die Anzeige nach wie vor 000 an.

21. Apparat arbeitet einwandfrei, aber eine der 3 Ziffern leuchtet nicht auf.

22. Apparat arbeitet einwandfrei, aber die Anzeige stellt nicht die entsprechende Drehzahl dar, die Ziffern werden nicht vollständig geschrieben, die Ziffern leuchten nicht auf, oder eine der Ziffern bleibt 0 oder eine andere beliebige Zahl.
KONTROLLE "DIRECT MOTOR CONTROL"

* Um ohne Plattenteller die Wirkung des Plattenspielers zu kontrollieren, müssen an der Druckplatineseite ein Kondensator von 2 μF und ein Widerstand von 100 kΩ in Serie zugeschaltet werden. Siehe Verdrahtungsplan Abb. 9.

KONTROLLE "IN LOCK"

a. "In lock"-Stellung IC440

Bei normal arbeitendem Motor und normal arbeitender Motorregelung R - 100 kΩ und C - 2 μF angebracht, siehe Abb. 8 und 9. Apparat in Stellung "Crystal" und Tonarm neben dem Armträger (Motor läuft).

Nach einigen Sekunden muss der Punkt 3 von IC440a auf 0 Volt kommen. Punkt 4 von IC440a muss jetzt 10 V führen ("in lock"-Stellung).

Bremst man jetzt den Plattenteller von Hand etwas ab, muss Punkt 3 von IC440b ≈ 4 V annehmen und Punkt 4 von IC440a kommt auf 0 V.

Lässt man nunmehr den Plattenteller wieder frei drehen, so wird nach einigen Sekunden der Punkt 3 von IC440b wieder 0 V und der Punkt 4 von IC440a 10 V.

IC451

b. "In lock"-Bereich IC446

Der Apparat arbeitet unter den Bedingungen, genannt bei a. Einige Sekunden nach dem Start des Motors müssen die Punkte 1, 2, 4, 8, 12 und 13 von IC446 ≈ 10 V führen. Die Punkte 3, 5, 6, 10 und 11 von IC446 müssen jetzt eine Spannung von 0 Volt führen. Hält man jetzt den Plattenteller an, müssen die Punkte 1, 2, 4, 8, 12 und 13 auf 0 Volt und die Punkte 3, 5, 6, 10 und 11 auf 10 Volt kommen.

Gibt man den Plattenteller wieder frei, wird nach einigen Sekunden der alte Zustand wieder hergestellt sein. Ist dies nicht der Fall, so sind IC446 und der Punkt 4 der Elektrischen Einstellungen zu kontrollieren (Abgleich von "lock range").

c. Zeitbasis-Umschalter IC437

Bremst man den Plattenteller etwas ab, muss dieser Impulszug auf 88,8 kHz kommen (siehe Messpunkt).

Gibt man darauf den Plattenteller wieder frei, kehrt der Impulszug nach einigen Sekunden wieder nach 8,88 kHz zurück, bringt man den Schalter SK2 (Quartz/Pitch) in die Stellung "Pitch", muss der Impulszug am Punkt 3 IC437 auch bei freier Drehung 88,8 kHz betragen.

Stoppt man den Plattenteller, so kommt Punkt 10 von IC437 auf 10 V und steht am Punkt 3 von IC437 kein Impulszug zur Verfügung.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>See</th>
<th>Position</th>
<th>f</th>
<th>Time base</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Base de temps</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>4915.200 kHz</td>
<td>A = 4 msec B = 15 msec</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1200 Hz</td>
<td>A = 40 msec B = 150 msec</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4800 Hz</td>
<td>A = 40 msec B = 150 msec</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>120 Hz</td>
<td>A = 38 msec B = 38 msec</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>533.33 Hz</td>
<td>A = 380 msec B = 380 msec</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td></td>
<td>88.88 Hz</td>
<td>A = 76 msec B = 76 msec</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td></td>
<td>178 Hz</td>
<td>A = 760 msec B = 760 msec</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td></td>
<td>195 Hz</td>
<td>A = 152 msec B = 152 msec</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td></td>
<td>88.88 Hz</td>
<td>A = 1520 msec B = 1520 msec</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td></td>
<td>245 Hz</td>
<td>A = 15200 msec B = 15200 msec</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td></td>
<td>262 Hz</td>
<td>A = 15200 msec B = 15200 msec</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td></td>
<td>120 Hz</td>
<td>A = 250 msec B = 2500 msec</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>33 1/3 r.p.m. - t.r.s/min.</td>
<td>88.88 Hz</td>
<td>A = 400 msec B = 2500 msec</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>45 r.p.m. - t.r.s/min.</td>
<td>120 Hz</td>
<td>A = 400 msec B = 2500 msec</td>
</tr>
<tr>
<td>15</td>
<td>B</td>
<td>33 1/3 r.p.m. - t.r.s/min.</td>
<td>88.88 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>Crystal, 45 r.p.m. - t.r.s/min.</td>
<td>88.88 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>17</td>
<td>E</td>
<td></td>
<td>53.3 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>18</td>
<td>E</td>
<td></td>
<td>53.3 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td></td>
<td>5.33 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>20</td>
<td>G</td>
<td></td>
<td>13.33 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>21</td>
<td>G</td>
<td></td>
<td>1.33 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>22</td>
<td>G</td>
<td></td>
<td>0.33 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>23</td>
<td>H</td>
<td></td>
<td>3.33 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>24</td>
<td>H</td>
<td></td>
<td>0.66 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>25</td>
<td>I</td>
<td></td>
<td>6.66 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>26</td>
<td>I</td>
<td></td>
<td>0.66 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>27</td>
<td>K</td>
<td></td>
<td>0.66 Hz</td>
<td>A = 2.5 msec B = 9 msec</td>
</tr>
<tr>
<td>28</td>
<td>B</td>
<td>33 1/3 r.p.m. - t.r.s/min.</td>
<td>88.88 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td>45 r.p.m. - t.r.s/min.</td>
<td>120 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>30</td>
<td>B</td>
<td>33 1/3 r.p.m. - t.r.s/min.</td>
<td>88.88 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td>45 r.p.m. - t.r.s/min.</td>
<td>12 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>33 1/3 r.p.m. - t.r.s/min.</td>
<td>88.88 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>33</td>
<td>B</td>
<td>45 r.p.m. - t.r.s/min.</td>
<td>3 Hz</td>
<td>A = 1.6 msec B = 6.8 msec</td>
</tr>
<tr>
<td>34</td>
<td>J</td>
<td>Pitch, 33 1/3 r.p.m. - t.r.s/min.</td>
<td>22.2 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>35</td>
<td>L</td>
<td>Crystal</td>
<td>22.2 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>36</td>
<td>M</td>
<td></td>
<td>30 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>37</td>
<td>N</td>
<td></td>
<td>3 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>38</td>
<td>O</td>
<td></td>
<td>3 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>39</td>
<td>P</td>
<td></td>
<td>3 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>40</td>
<td>Q</td>
<td></td>
<td>3 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>41</td>
<td>R</td>
<td></td>
<td>3 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>42</td>
<td>S</td>
<td></td>
<td>3 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>43</td>
<td>T</td>
<td></td>
<td>3 kHz</td>
<td>A = 1.9 msec B = 3.8 msec</td>
</tr>
<tr>
<td>Column 1</td>
<td>Column 2</td>
<td>Column 3</td>
<td>Column 4</td>
<td>Column 5</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Data 1</td>
<td>Data 2</td>
<td>Data 3</td>
<td>Data 4</td>
<td>Data 5</td>
</tr>
<tr>
<td>Data 8</td>
<td>Data 9</td>
<td>Data 10</td>
<td>Data 11</td>
<td>Data 12</td>
</tr>
</tbody>
</table>

Legend:
- **Name:** [Person's Name]
- **Role:** [Position/Title]
- **Email:** [Email Address]
- **Phone:** [Phone Number]
<table>
<thead>
<tr>
<th>IC</th>
<th>TS</th>
<th>OFF</th>
<th>Arrêt</th>
<th>33 tours/min</th>
<th>46 tours/min</th>
<th>DEMARREUR/RETOUR DU BRA</th>
<th>Vitäli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC</th>
<th>TS</th>
<th>OFF</th>
<th>Arrêt</th>
<th>33 tours/min</th>
<th>46 tours/min</th>
<th>DEMARREUR/RETOUR DU BRA</th>
<th>Vitäli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC</th>
<th>TS</th>
<th>OFF</th>
<th>Arrêt</th>
<th>33 tours/min</th>
<th>46 tours/min</th>
<th>DEMARREUR/RETOUR DU BRA</th>
<th>Vitäli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IC</th>
<th>TS</th>
<th>OFF</th>
<th>Arrêt</th>
<th>33 tours/min</th>
<th>46 tours/min</th>
<th>DEMARREUR/RETOUR DU BRA</th>
<th>Vitäli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>757</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>LIST OF ELECTRICAL PARTS (Fig. 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOMENCLATURE DES PIECES ELECTRIQUES (Fig. 10).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>426</td>
<td>HEF4737VP</td>
<td>5322 209 14511</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>427</td>
<td>HEF4511BP</td>
<td>5322 209 14122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>MC14001BCP</td>
<td>5322 209 14045</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>429</td>
<td>HEF4013BP</td>
<td>5322 209 10002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>HEF4093BP</td>
<td>5322 209 14186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| LIST OF MECHANICAL PARTS (Fig. 1) |
| NOMENCLATURE DES PIECES MECANIQUES (Fig. 1) |
|---|---|---|---|
| 51 | 4822 691 30069 | 110 | 4822 418 40365 |
| 52 | 4822 520 10391 | 111 | 4822 492 40748 |
| 53 | 4822 486 50121 | 114 | 4822 278 90329 |
| 54 | 4822 528 10329 | 115 | 4822 535 91086 |
| 55 | 4822 358 30215 | 116+115+95 | 4822 251 70161 |
| 56 | 4822 532 60668 | 117 (Philips) | 4822 691 30068 |
| 58 | 4822 502 11366 | 117 (Retma) | 4822 402 60627 |
| 59 | 4822 325 80066 | 118 | 4822 402 60621 |
| 60 | 4822 492 62114 | 119 | 4822 411 60627 |
| 61 | 4822 402 60617 | 120 | 4822 256 90248 |
| 62 | 4822 361 20147 | 121 | 4822 402 60625 |
| 65 | 4822 462 40344 | 122 | 4822 444 30259 |
| 66 | 4822 325 60001 | 123 | 4822 410 21932 |
| 67 | 4822 146 50159 | 124 | 4822 413 30723 |
| 73+80 | 4822 520 10392 | 125 | 4822 410 21933 |
| 74 | 4822 502 11368 | 126 | 4822 276 10698 |
| 75 | 4822 402 60616 | 127 | 4822 410 22041 |
| 76 | 4822 460 20167 | 128+118+123 | 4822 402 60682 |
| 82 | 4822 464 50063 | 125+131 | 4822 535 60035 |
| 88 | 4822 278 90331 | 129 | 4822 454 20376 |
| 89 | 4822 402 60624 | 130 | 4822 691 30071 |
| 91 | 4822 402 60663 | 131 | 4822 402 60662 |
| 93 | 4822 402 60626 | 132 | 4822 450 80449 |
| 94 | 4822 520 10388 | 136 | 4822 256 90176 |
| 95 | 4822 323 50054 | 137 | 4822 492 31145 |
| 96 | 4822 462 71097 | 138 | 4822 492 31236 |
| 97 | 4822 413 50946 | 139 | 4822 492 40736 |
| 100 | 4822 402 60615 | 140+144 | 4822 402 60622 |
| 101 | 4822 502 11367 | 143 | 4822 492 31197 |
| 102 | 4822 492 51212 | 144 | 4822 462 71086 |
| 103 | 4822 492 31454 | 145 | 4822 535 91088 |
| 104 | 4822 321 30162 | 146 | 4822 492 51055 |
| 107 | 4822 402 60618 | 150 | 4822 535 91087 |
| 108 | 4822 528 80699 | 152 | 4822 535 90971 |
| 109 | 4822 520 10399 | 153 | 4822 492 31433 |
Because, generally speaking, MOS IC's are very sensitive to overload and too high voltages, measurements should be carried out with greatest possible care. For further instructions, see the directions enclosed in the separate IC-packages.

Because generally speaking, MOS IC's are very sensitive to overload and too high voltages, measurements should be carried out with greatest possible care. For further instructions, see the directions enclosed in the separate IC-packages.

Omdat MOS IC's in het algemeen zeer gevoelig zijn voor overbelasting en te hoge spanning dient bij het meten de grootste mogelijke zorgvuldigheid in acht genomen te worden. Zie voor verdere instructies de bijlui ter in de verpakking van de IC's.

Da MOS IC's im allgemeinen sehr empfindlich gegen Uberbelastung und zu hohe Spannung sind, muss man beim Messen auserst vorsichtig vorgehen. Fur weitere Weisungen siehe den beigegebenen Zettel in der Verpackung der IC's.

Koska yleisesti MOS-mikroprosessorit ovat erittäin kärkeitä ja korkeita voimia vastaan, mitä suurin huolto on tehtävä kunnioittaen kaikkia tärkeitä ohjeita. Jos haluat lisätietoja MOS-IC:n käsittelemisestä, on lukeutettu tälle ohjelma.

Để MOS IC's trong thực tế rất nhạy cảm với quá tải và điện áp quá cao, việc đo lường nên được thực hiện với sự cẩn thận tuyệt đối. Để có hướng dẫn chi tiết, xem các hướng dẫn được bao gồm trong từng bộ IC riêng biệt.

Da MOS-IC'er er meget følsomme overfor høje spændinger og andre former for overbelastning, skal handtering af disse ske med størst mulig forsigtighed. Se instruktionerne der er lagt i IC-embalangen.

LIST OF ELECTRICAL PARTS (Fig. 8)

<table>
<thead>
<tr>
<th>-IC-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>426</td>
<td>HEF4007UBP</td>
<td>4822 209 10032</td>
</tr>
<tr>
<td>427,430.</td>
<td>MC14011BCP</td>
<td>5322 209 14046</td>
</tr>
<tr>
<td>451</td>
<td>HEF4020BP</td>
<td>5322 209 14269</td>
</tr>
<tr>
<td>428</td>
<td>µA78MGCU1</td>
<td>4822 209 80384</td>
</tr>
<tr>
<td>431,435</td>
<td>CD4047BCN</td>
<td>5322 209 14125</td>
</tr>
<tr>
<td>432,433</td>
<td>HEF4188BP</td>
<td>5322 209 14118</td>
</tr>
<tr>
<td>434,444</td>
<td>HEF4158BP</td>
<td>5322 209 14064</td>
</tr>
<tr>
<td>437,438</td>
<td>HEF4080BP</td>
<td>5322 209 14058</td>
</tr>
<tr>
<td>439</td>
<td>HEF4502BP</td>
<td>5322 209 14189</td>
</tr>
<tr>
<td>440,446</td>
<td>MC14001B8P</td>
<td>5322 209 14045</td>
</tr>
<tr>
<td>441,447</td>
<td>HEF4468BP</td>
<td>5322 209 14126</td>
</tr>
<tr>
<td>442</td>
<td>MC14069B8P</td>
<td>4822 209 10033</td>
</tr>
<tr>
<td>443</td>
<td>MC14073B8P</td>
<td>5322 209 14066</td>
</tr>
<tr>
<td>444,450</td>
<td>NE532N</td>
<td>4822 209 80408</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-TS-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>456,459,460,461</td>
<td>BC54BA</td>
<td>4822 130 40948</td>
</tr>
<tr>
<td>457</td>
<td>BC563</td>
<td>4822 130 44283</td>
</tr>
<tr>
<td>458</td>
<td>BC548B</td>
<td>4822 130 44197</td>
</tr>
<tr>
<td>462</td>
<td>BC548C</td>
<td>4822 130 44196</td>
</tr>
<tr>
<td>464,466,468</td>
<td>BC548B</td>
<td>4822 130 40937</td>
</tr>
<tr>
<td>465</td>
<td>BD135</td>
<td>4822 130 40645</td>
</tr>
<tr>
<td></td>
<td>Fixing material TS465 Spring clip Plate mica</td>
<td>4822 265 40128 4822 265 40133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-D-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>470</td>
<td>BY164</td>
<td>4822 130 30414</td>
</tr>
<tr>
<td>471</td>
<td>BZX79/CSV8</td>
<td>5322 130 30768</td>
</tr>
<tr>
<td>499</td>
<td>BA317</td>
<td>4822 130 30847</td>
</tr>
<tr>
<td>487,488</td>
<td>BA317</td>
<td>4822 130 30847</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-LED-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>406, 484,485</td>
<td>COY40L</td>
<td>4822 130 31023</td>
</tr>
<tr>
<td></td>
<td>COY85</td>
<td>4822 130 31008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-R-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>489</td>
<td>Cerm.trimpotm. 10 kΩ</td>
<td>5322 100 10113</td>
</tr>
<tr>
<td>490</td>
<td>Cerm.trimpotm. 22 kΩ</td>
<td>5322 101 14069</td>
</tr>
<tr>
<td>491</td>
<td>Cerm.trimpotm. 6.8 kΩ</td>
<td>4822 100 10251</td>
</tr>
<tr>
<td>492</td>
<td>Cerm.trimpotm. 15 kΩ</td>
<td>4822 100 10249</td>
</tr>
<tr>
<td>493</td>
<td>Carb.trimpotm. 22 kΩ</td>
<td>4822 100 10051</td>
</tr>
<tr>
<td>494,496</td>
<td>Carb.trimpotm. 4.7 kΩ</td>
<td>4822 100 1036</td>
</tr>
<tr>
<td>495</td>
<td>Carb.trimpotm. 220 kΩ</td>
<td>4822 100 10088</td>
</tr>
<tr>
<td>499</td>
<td>LDR</td>
<td>4822 116 10001</td>
</tr>
<tr>
<td>526,528</td>
<td>High. Volt. res.</td>
<td>4822 110 42221</td>
</tr>
<tr>
<td>529,531</td>
<td>High. Volt. res.</td>
<td>4822 110 42187</td>
</tr>
<tr>
<td>532</td>
<td>High. Volt. res. 22 kΩ</td>
<td>4822 110 42223</td>
</tr>
<tr>
<td>542,543</td>
<td>Metal foil res. 4,7 kΩ-2%</td>
<td>5322 116 54008</td>
</tr>
<tr>
<td>547</td>
<td>Metal foil res. 100 kΩ-1%</td>
<td>5322 116 54686</td>
</tr>
<tr>
<td>548</td>
<td>Metal foil res. 68 kΩ-1%</td>
<td>5322 116 54683</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-C-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>488</td>
<td>Air trimmer 5.5-65 pF</td>
<td>5322 125 54025</td>
</tr>
<tr>
<td>727</td>
<td>PPC film cap. 10 Kpf-250 V</td>
<td>4822 121 40483</td>
</tr>
<tr>
<td>739</td>
<td>Micro poco 22 Kpf-63 V-1%</td>
<td>4822 121 50609</td>
</tr>
<tr>
<td>740</td>
<td>Micro poco 24 Kpf-63 V-1%</td>
<td>4822 121 50608</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-L-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>498,499</td>
<td>Coil 470 µH</td>
</tr>
<tr>
<td></td>
<td>1,2</td>
<td>4822 156 10449</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous - Divers-</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T405</td>
<td>Trafo</td>
<td>4822 146 50159</td>
</tr>
<tr>
<td>F405</td>
<td>Trafo fuse</td>
<td>4822 252 20007</td>
</tr>
<tr>
<td>KT497</td>
<td>Crystal 4915,200 kHz</td>
<td>4822 242 70277</td>
</tr>
</tbody>
</table>
Fig. 9