be careful not to damage the wires connected to the
thermal switch.
5. The driver board assembly/heat sink can now be laid
down along side the chassis.
6. Connect the extender cables between P201 and J201,
and between P202 and J202. Power can now be
applied to the chassis, when it is in the driver board
assembly service position, for troubleshooting the
circuitry contained on the driver board assembly.
For extender cable fabrication instructions, see
"Extender Cable Fabrication".
7. To reassemble, reverse the preceding steps.

Extender cable fabrication
A set (two cables) of extender cables must be fabricated
to power the chassis when in the Driver Board assembly
position. Fabrication of a single cable is as follows:
1. The materials required to fabricate a single extender
cable are listed below:

<table>
<thead>
<tr>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>127 mm length of insulated 18 gauge solid wire</td>
</tr>
<tr>
<td>1</td>
<td>4822 265 30151, 8-pin male connector</td>
</tr>
<tr>
<td>1</td>
<td>4822 265 30158, 8-pin female connector</td>
</tr>
</tbody>
</table>
2. Prepare the eight lengths of wire by removing 6 mm
of insulation from each end.
3. Tin the wire ends, as well as the connector terminals
on the male and female connectors.
4. Using one of the prepared lengths of wire, connect pin 1 of the male connector to pin 1 of the female
connector. Continue wiring the connectors in this
manner until the remaining seven pins of each
connector have been connected to one another.

Replacement of components secured to chassis by rivets
1. Bore out the rivets using a drill bit slightly larger in
diameter than the rivet, see Figure 4.
2. Punch out the remainder of the rivet with a nail set or
pick punch.
3. Remove the defective components.
4. Install the new component by securing it with
another rivet, or suitable screw and nut.

ADJUSTMENTS
Quiescent current adjustment
To adjust the direct coupled quasi-complementary
output stage, perform the following adjustment on each
Driver Board assembly:
1. Place the speaker switch to the "Off" position.
2. Rotate the level controls completely counterclockwise (no input signal).
3. Connect a DC VTM across R23a.
4. Adjust R220 (Idle Range) to read 45 mV ± 5 mV, on the
DC VTM as soon as the amplifier is turned On (cold).

Note: This adjustment must be performed in the
affected channel when any of the output transistors
are replaced. Misadjustment will cause crossover
distortion and possible premature failure of the
output transistors.

Level meter adjustment
To adjust the level meters perform the following adjust-
ments, left channel and (right channel), on the front
board assembly:
1. Disconnect J105 from P105.
2. With the "0 dB" (X1) meter range activated, couple a
200 mV, 1.0 kHz signal to pin 2 (1) of P105.
3. Connect an AC VTM to the positive terminal of
C119 (C120), and adjust R140 (R141) until 105 mV
is indicated on the meter.
4. Connect J105 to P105.
5. Connect an AC VTM to the left (right) channel speaker
system "A" terminals, and place the speaker
switch in the "A" position.
6. Rotate the left (right) channel level control to mid-
position. Apply a 1,000 Hz signal to the left (right)
channel input jack and adjust the generator output
until 40 VAC is indicated on the AC VTM.
7. Adjust R192 (R148) until 0 dB is indicated on the
power amplifiers left (right) channel level meter.

INSTRUCTIONS FOR SERVICING AND REPLACING
PARTS
Driver and output transistor replacement
Since transformerless quasi-complementary output
circuitry is utilized in this chassis, extreme care should
be exercised when servicing or replacing the transistors.
It is imperative that the transistors be isolated from the
heat sink by means of a mica insulator coated on both
sides with Dow-Corning DC4 silicon grease, or equivalent.
When replacing a driver or output transistor, make
certain the replacement transistor has the same beta
range (i.e., Orange or Red) as the defective transistor.
The beta range of the transistor is indicated by a red or
orange dot (or lettering) on the top of the case. Failure
to replace a defective driver or output transistor with
one having the same beta characteristics could be
extremely detrimental to the performance of the power amplifier.

After servicing or replacing one or more of the output
transistors, the Quiescent Current Adjustment must be
performed in the affected channel. Misadjustment of the
output transistors will cause crossover distortion and
possible premature failure of the output transistors.