TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHASSIS LAYOUT (TOP VIEW)</td>
<td>2</td>
</tr>
<tr>
<td>CHASSIS LAYOUT (BOTTOM VIEW)</td>
<td>3</td>
</tr>
<tr>
<td>CHASSIS LAYOUT (SIDE VIEWS)</td>
<td>4</td>
</tr>
<tr>
<td>DISASSEMBLY OF UNIT</td>
<td>5</td>
</tr>
<tr>
<td>PRECAUTION</td>
<td>8</td>
</tr>
<tr>
<td>POWER AMPLIFIER ADJUSTMENT PROCEDURE</td>
<td>21</td>
</tr>
<tr>
<td>1. DC BALANCE ADJUSTMENT</td>
<td>8</td>
</tr>
<tr>
<td>2. BIAS ADJUSTMENT</td>
<td>8</td>
</tr>
<tr>
<td>3. OVERLOAD PROTECTION LEVEL ADJUSTMENT</td>
<td>9</td>
</tr>
<tr>
<td>4. WATTS METER ADJUSTMENT</td>
<td>9</td>
</tr>
<tr>
<td>OVERLOAD PROTECTOR</td>
<td>9</td>
</tr>
<tr>
<td>TROUBLE SHOOTING GUIDE</td>
<td>11</td>
</tr>
<tr>
<td>GAIN DIAGRAM</td>
<td>11</td>
</tr>
<tr>
<td>CAUTION IN WIRING PORTIONS DURING REPAIRS</td>
<td>12</td>
</tr>
<tr>
<td>SCHEMATIC DIAGRAM (1)</td>
<td>13</td>
</tr>
<tr>
<td>SCHEMATIC DIAGRAM (2)</td>
<td>16</td>
</tr>
<tr>
<td>PRE-AMPLIFIER CIRCUIT BOARD DIAGRAM</td>
<td>19</td>
</tr>
<tr>
<td>PHONO AMPLIFIER CIRCUIT BOARD DIAGRAM</td>
<td>21</td>
</tr>
<tr>
<td>MAIN AMPLIFIER CIRCUIT BOARD DIAGRAM</td>
<td>23</td>
</tr>
<tr>
<td>VOLUME CONTROL CIRCUIT BOARD DIAGRAM</td>
<td>23</td>
</tr>
<tr>
<td>POWER SUPPLY CIRCUIT BOARD DIAGRAM</td>
<td>24</td>
</tr>
<tr>
<td>OVER LOAD CIRCUIT BOARD DIAGRAM</td>
<td>25</td>
</tr>
<tr>
<td>REPAIR PARTS LIST</td>
<td>26</td>
</tr>
</tbody>
</table>
1. C004, SMOOTHING CAPACITOR, R-ch.
2. T002, POWER TRANSFORMER, R-ch.
3. BALANCE CONTROL.
4. VOLUME CONTROL.
5. VOLUME CONTROL CIRCUIT BOARD.
7. M001, WATTS METER, L-ch.
8. T001, POWER TRANSFORMER, L-ch.
9. POWER SWITCH.
10. C002, SMOOTHING CAPACITOR, L-ch.
11. C001, SMOOTHING CAPACITOR, L-ch.
12. L-ch. OVERLOAD LEVEL ADJ.
13. L-ch. MAIN AMP. CIRCUIT BOARD.
14. Q001, POWER AMP., L-ch.
15. POWER AMP. BIAS ADJ., L-ch.
16. Q003, POWER AMP., L-ch.
17. D001, VARISTOR.
18. R-ch. MAIN AMP. CIRCUIT BOARD.
19. Q005, POWER AMP., R-ch.
20. Q007, POWER AMP., R-ch.
21. R-ch. OVERLOAD LEVEL ADJ.
22. D002, VARISTOR.
23. R-ch. POWER AMP. BIAS ADJ.
24. C003, SMOOTHING CAPACITOR, R-ch.
25. HEADPHONES JACK.
26. BASS CONTROL.
27. BASS TURNOVER SWITCH
28. TREBLE TURNOVER SWITCH
29. TREBLE CONTROL
30. LOW CUT FILTER SWITCH
31. HIGH CUT FILTER SWITCH
32. MODE SWITCH
33. TAPE MONITOR SWITCH
34. MIC. INPUT JACK
35. MUTING SWITCH
36. LOUDNESS SWITCH
37. TONE CONTROL AMP. CIRCUIT BOARD
38. R-ch. POWER SUPPLY CIRCUIT BOARD
39. Q.008, POWER AMP., R-ch.
40. Q.903, -B STABILIZER
41. Q.006, POWER AMP., R-ch.
42. L-ch. POWER SUPPLY CIRCUIT BOARD
43. Q.004, POWER AMP., L-ch.
44. F.001, AC FUSE
45. Q.002, POWER AMP., L-ch.
46. Q.901, +B STABILIZER
(RIGHT SIDE VIEW)

47. SPEAKER TERMINALS CIRCUIT BOARD
48. SPEAKER [A] SWITCH
49. SPEAKER [B] SWITCH
50. SPEAKER [C] SWITCH
51. SPEAKER [C] TERMINALS, L-ch.
52. SPEAKER [C] TERMINALS, R-ch.
53. L-ch. WATTS METER LEVEL ADJ.
54. R-ch. WATTS METER LEVEL ADJ.
55. SPEAKER [B] TERMINALS, L-ch.
56. OVERLOAD PROTECTION RELAY
57. SPEAKER [B] TERMINALS, R-ch.
58. OVERLOAD PROTECTION CIRCUIT BOARD
59. SPEAKER [A] TERMINALS, R-ch.
60. SPEAKER [A] TERMINALS, L-ch.

(LEFT SIDE VIEW)

61. PHONO AMP. CIRCUIT BOARD
62. PHONO-1 INPUT JACKS
63. PHONO-2 INPUT JACKS
64. TUNER INPUT JACKS
65. AUX-1 INPUT JACKS
66. AUX-2 INPUT JACKS
67. TAPE MONITOR-1 [OUT] JACKS
68. TAPE MONITOR-2 [OUT] JACKS
69. PREAMP. [OUT] JACKS
70. MAIN AMP. [IN] JACKS
71. TAPE MONITOR-2 [IN] JACKS
72. UNITE-SEPARATE SWITCH
73. TAPE MONITOR-2 DIN JACK
74. TAPE MONITOR-1 [IN] JACK
75. TAPE MONITOR-1 DIN JACK
76. PHONO INPUT SENSITIVITY SWITCH
77. PHONO INPUT IMPEDANCE SWITCH
78. PHONO-1 INPUT DIN JACK
79. SWITCHES SHORTING CIRCUIT BOARD
80. MIXING LEVEL CONTROL & MIC. SWITCH
81. AUX-2 SWITCH
82. AUX-1 SWITCH
83. TUNER SWITCH
84. PHONO-2 SWITCH
85. PHONO-1 SWITCH
DISASSEMBLY OF UNIT

1. Remove Top Cover. (Fig. 1-1, remove screws A-J.)
2. Remove Bottom Cover. (Fig. 1-2, remove screws 1-10.)
3. Remove Front Panel.
 a) Remove all knobs (Fig. 1-3, knobs A-K) except Push Switch.
 b) Unscrew the 4 mounting screws on left and right panels (Fig. 1-3, screws 9-12).
 c) Unscrew the 8 mounting screws on upper and lower portions. (Fig. 1-3, screws 1-8).

 Note: When removing the panel, be careful not to touch the screws that fix the handle to the panel. Follow exactly the procedures in Phase b).

Fig. 1-1 TOPVIEW

Fig. 1-2 BOTTOM VIEW

Fig. 1-3 FRONT PANEL
4. How to Remove Phono Amp. PCB.
 a) After completing procedures 1 to 3, remove the side panel by unscrewing the 4 side panel mounting screws (Fig. 1-5, screws 1, 2, 7 and 8) and the 22 terminal mounting screws on the indicator panel (Fig. 1-5, screws 9-30).
 b) Remove the 5 function knobs (Fig. 1-4, knobs A-E).
 c) Unscrew the 2 function switch mounting screws (Fig. 1-4, screws 1 and 2).
 d) Remove the 2 mounting nuts on MIC JACK and MIC VOL., respectively.
 (Fig. 1-4, nuts 3 and 4).
 e) Unscrew the 6 Phono Amp. PCB mounting screws (Fig. 1-6, screws 1-6).

5. How to Detach Output Terminal PCB and Overload Protection PCB.
 a) After completing procedures 1 to 3, remove the left side panel by unscrewing the 4 left side panel mounting screws. (Fig. 1-7, screws 1-4).
 b) Detach Output Terminal PCB.
 1) Remove the 4 knobs for power switch and speaker switch (Fig. 1-4, knobs F-1), and 2 switch mounting screws (Fig. 1-4, screws 5 and 6).
 2) Unscrew the 2 headphone jack mounting screws (Fig. 1-4, screws 7 and 8).
 3) Unscrew the 6 Output Terminal PCB mounting screws (Fig. 1-8, screws 1-6).
 c) To detach Overload Protection PCB, after completing the procedure in Phase a), unscrew the 6 Overload Protection PCB mounting screws (Fig. 1-8, screws 7-12).
6. How to Detach WATTS METER
 a) After completing procedures 1 to 3, unscrew the
 4 meter decoration board mounting screws (Fig.
 1-4, screws 33-36).
 b) Remove the meter mounting nut on the rear side
 of meter.
7. How to Detach Volume Control and Tone Control
 Amp. Boards.
 a) After completing procedures 1 to 3, remove the 9
 knobs for FUNCTION POWER AND SPEAKER
 (Fig. 1-4, knobs A-1), and the 4 switch mounting
 screws (Fig. 1-4, screws 1, 2, 5, and 6).
 b) Remove the 4 mounting nuts for MIC VOL., MIC
 JACK and PHONE JACK. (Fig. 1-4, nuts 3, 4, 7
 and 8).
 c) Unscrew the 6 front chassis mounting screws, and
 pull front chassis out toward you.
 d) Remove mounting screws and nuts for all controls
 on the front chassis (Fig. 1-4, screws, nuts 15-32)
 12 screws and 5 nuts), and detach Tone Control
 Amp. PCB from front chassis.

8. To Remove Left Side Panel Without Removing Front
 Panel. (as in the case of replacing overload protection
 relay or adjusting calibration of WATTS METER
 only.)
 a) After completing procedures 1 and 2, unscrew the
 2 left side panel mounting screws. (Fig. 1-4, screws
 9 and 10).
 b) Next, after unscrewing the 8 side panel mounting
 screws and indicator board mounting screws (Fig.
 1-7, screws 1-8), remove the side panel, by holding
 the side adjacent to the rear panel and pulling it
 out toward the rear. Remove the indicator board.
9. How to Remove Main Amp. PCB.
 a) After completing procedures 1 and 2, detach
 varistor by unscrewing the varistor mounting
 screw (1) in Fig. 1-9, and unscrew Main Amp
 PCB mounting screws (2) and (3) in Fig. 1-9.
 Remove the PCB by pulling it upwards.
10. Follow disassembly procedures in exact reverse to
 reassemble.
PRECAUTIONS

1. Always disconnect the chassis from power line when soldering. Turning the power switch OFF is not enough. Power line leakage passing through the heating element may destroy the transistors.
2. Never attempt to do any work on the transistor amplifiers without first disconnecting the AC line cord and waiting until the power supply filter capacitors have discharged.
3. Replacements for output and driver transistors, if necessary, must be made from the same hfe group as the original type.
4. If one output transistor burns out (open or short), always remove all output transistors in that channel and check the bias adjustment, the control and other parts in the network with an ohm-meter before inserting a new transistor. All transistors in one channel will be destroyed if the base biasing circuit is open on the emitter end.
5. When mounting a replacement power transistor, be sure the bottom of the flange, the mica insulators and the surface of the heat sink are free of foreign matter, for they may cause transistors failure.
6. Silicon grease must be applied between the transistor and the mica insulator, and between the mica insulator and the heat sink for better heat conduction.

POWER AMPLIFIER ADJUSTMENT PROCEDURE

1. DC BALANCE ADJUSTMENT

Instrument: DC VTVM (set up 3V range, utilizing Zero-point adjusting knob to obtain reading range between +1.5V and -1.5V, centered at 0.)
a. Set volume control to minimum. (i.e. no signal input).
b. Next, connect DC VTVM to Main Amp PCB. (Connect (+) lead wire to Pin5, and (-) lead wire to Pin E3.) See Fig. 2.
c. Adjust by turning potentiometer VR601 so that VTVM needle reads center (zero volts).

2. BIAS ADJUSTMENT

Note: Prior to bias adjustment, always give the set a preparatory run for several minutes, at rated output (at 8Ω) both channels driven.
Instrument: DC millivolt meter
a. Set volume control to minimum. (i.e. no signal input).
b. Connect DC millivolt meter to Test pin of Main Amp PCB See Fig. 3.
c. Adjust by turning potentiometer VR602 so that the meter reads 30mV.
3. OVERLOAD PROTECTION LEVEL ADJUSTMENT

Instruments: Audio Generator, AC VTVM and 4-ohm (200W) load resistor.

Make this adjustment for each channel, singly until protection relay goes to OFF (i.e. output voltage is zero) under the following conditions:

a. Connect 4Ω (200W) non-inductive load resistor to speaker terminal, and connect it with AC VTVM in parallel to it.
b. Connect Audio Generator to Aux input terminal and apply 100Hz (sine wave) signal.
c. Set POWER to ON and adjust volume control or Audio Generator ATT so that AC VTVM reads 30V.
d. Adjust by turning potentiometer VR603 on the Main Amp PCB until protection relay goes to OFF (i.e. output voltage is 0 V). At this time, make certain that overload indicator on the front panel (centered between right and left meters) is illuminated.
e. Switch POWER to OFF, and complete the same adjustments from Phases (a)-(d) for the other channel.

f. *To reset overload protection circuit, power switch should be set to OFF first before resetting.

4. WATTS METER CALIBRATION

Instruments: Audio Generator, AC VTVM and 8Ω (50W) non-inductive load resistor.

a. Connect 8Ω (50W) load resistor to speaker terminal, and connect AC VTVM in parallel to it.
b. Connect Audio Generator to AUX input and apply 100Hz (sine wave) signal.
c. Adjust input signal so that AC VTVM reads 9V (i.e. 10W/8Ω).
d. In the Phase (c) state, adjust potentiometer VR701 (left channel) and VR702 (right channel) so that the Watts Meter reads 10W. See Fig. 5.

OVERLOAD PROTECTOR

I. The Overload Protection Circuit used in Model RA-1412 has the following two functions beside its basic function as an overload protection circuit.

1. To prevent low frequency noise from entering the speaker when Power Switch is set to ON.
2. To prevent residual sound (caused by discharging the power supply circuit capacitor which keeps the amplifier running) from entering the speaker.

II. Basic Function

A. To protect main amplifier, power supply circuit, etc. when output circuit (including speaker system) is shorted.
B. To protect speaker system from troubles occurring from shortcircuit of main amplifier circuit.
C. To protect main amplifier, speaker system, etc. from overinput signals entering main amplifier.

III. General Description of Protection Circuit Operation

A. If there is a short in the output circuit, the abnormality is detected by Q611 on the main amplifier circuit. When Q611 is closed, the gate voltage of thyristor D710 becomes (+), which closes D710 and activates Q703, and lowers the base bias of Q704. Then collector current is cut off, and protection relay is released to cut off speaker circuit from main amplifier circuit.

B. If there is a short in the main amplifier circuit, the abnormality is detected by transistor Q701 or Q702 on the protection circuit, either of which will be closed to raise the gate voltage of thyristor D710 to close D710. Accordingly, as in Phase A, collector current of Q704 is cut off, setting relay to OFF.

C. (1) If the intense input signal (causing middle point voltage of main amplifier to fluctuate by more
than ± 3V.) of low frequency range (under the
time constant as determined by R709 and C705
+706, or R710 and C705 +706 of protection
circuit) is applied to the main amplifier, Q701 or
702 of the protection circuit detects the abnor-
mality. Succeeding operations are as in Phase A.

(2) If, under the operation with 4Ω load, a state
exceeding the rated output occurs, Q611 causes
D710 to close.

Note:

1. a) In the state of Phase B, the DC fuse will blow.
 Therefore if any abnormality arises in the left
channel, power will not be supplied to either
main amplifier or to other circuits, resulting in
failure of illumination of overload indicator.
(See circuit diagram). On the other hand, even
if abnormality arises in the right channel, over-
load indicator will light up. (See circuit dia-
agram.)

b) In the state of Phase A or B, overload indicator
will light up even if abnormality arises in either
channel.

2. Setting abnormality detection level is done by
 VR603 of main amplifier circuit. See Section of
 Adjustment for Level Setting Condition and
 Method.

D. To restore protection circuit to normal, set Power
Switch to OFF.

The instant the power switch is set to OFF, the
interlock switch causes +B voltage of the protection
circuit to be neutralized with −B voltage, to release
relay circuit lock. If for some reason −B voltage is
not applied to this circuit when power switch is set to
OFF, the circuit remains in the OFF state of the relay
even after the power switch is set to ON. (i.e. over-
load indicator will light up even while no abnormality
is seen).

IV. Functions besides Basic Functions
A. When power is ON, bias voltage is applied to the base
 of Q704 in the relay circuit by the switch inter-
locking with power switch. The time required for the
bias voltage to reach a level causing Q704 to close (to
provide sufficient collector current to set the relay to
ON.) is specified by the time constant, which is
determined by R725 and C709 of the circuit and hFE
of Q704. For Model RA1412, the time is set at
approximately 7 seconds. This prevents noise, caused
by rush current at the time of switching power to
ON, from entering speaker.

B. When power is OFF, the base of Q704 is open by the
 switch interlocking with power switch and +B is
neutralized with −b throughout the protection
circuit.

Accordingly, the instant the power switch is set to
OFF, the relay is restored to OFF state, cutting
speaker from main amplifier. This prevents residual
sound from entering speaker.

Fig. 6 OVERLOAD PROTECTION CIRCUIT
I. Unit Inoperative (both channels)
A. Meter lamp does not light up. → Check AC fuse, F001.
1. If AC fuse is blown.
 a. Primary or secondary winding of power transformer (T001) or T002 may be shorted.
2. If AC fuse is normal.
 a. Power switch may be faulty, or
 b. Primary winding of power transformer (T001) or the circuit connected to it may be broken.
B. Meter lamp lights up. → Check DC fuse, F901, 902, 903 and 904 (placed on the power supply PCB of each channel).
1. If F901 and/or 902 are blown.
 a. Capacitors C001, 002, 901, 902 or 903 may be shorted, or
 b. Rectifiers D901, 902, 903 or 904 may be shorted, or
 c. Transistor of power amplifier or main amplifier circuit (left channel) may be faulty. (In this case, overload indicator does not light up.)
2. If F903 and/or 904 are blown.
 a. Transistor of power amplifier or main amplifier circuit (right channel) may be faulty. (In this case, overload indicator lights up.)
3. If DC fuses are normal and overload indicator lights up.
 a. Output circuit may be shorted, or
 b. DC balance of the main amplifier circuit is disturbed greatly, or
 c. Abnormal signal is applied to the input of the main amplifier, or
 d. D710 of the protection circuit is closed by the failure of −B circuit, or
 e. −B voltage is not applied to the protection circuit by the failure of the switch interlocking with power switch.

4. If DC fuses are normal and overload indicator does not light up.
 a. Overload protection circuit may be faulty, or
 (1) Relay RY701 may be faulty (breaking of coil, failure of contacts),
 (2) Relay switch (interlocking with power switch) may be faulty.
 b. +B circuit may be faulty.
II. Either channel inoperative. → Check to see that signals are applied to PRE OUT terminal.
A. If signals come to PRE OUT terminal.
 1. Main amplifier circuit may be faulty, or
 2. Unit-separation switch may be faulty, or
 3. Speaker switch may be faulty, or
 4. Contacts of overload protection relay may be faulty, or
 5. Power supply circuit may be faulty (*Note)
 a. Primary winding or secondary winding of power transformer T002 may be disconnected, or
 b. Capacitors C003, 004, 910, 911 or 912 may be shorted, or
 c. Rectifiers D506, 907, 908 or 909 may be shorted.
*Note: Section A.5. is the possible cause seen only when the right channel is inoperative. If trouble occurs in the power supply system of the left channel, both channels will become inoperative. (See I.B.1.a and b.)
B. If signals do not come to PRE OUT terminal,
 1. Tone amplifier circuit is faulty,
 a. Check voltage of each transistor.
 b. Check each coupling capacitor.

GAIN DIAGRAM

```
MIC 2 mV
TUNER 150mV
PHONO 2 mV
SIGNAL = 1,000Hz SINE WAVE
AUX 150mV

EQUALIZER AMP.
38dB

MONITOR

TONES CONTROL AMP.
17 dB (TONE FLAT)

PRE AMP.

MAIN AMP.
30dB

MIC AMP.
54dB

MIC

OUTPUT
31V-8Ω
BOTH CHANNEL DRIVEN
8Ω LOAD

TAPE IN 150mV
```
1. Output Terminal Portions.
 a. Once output terminal board has been removed, ground wire (wire running from Pin E1 and E2) from output circuit should be placed as shown in A in Fig. 7. (to prevent cross talking.)
 b. Blue (left channel) and green (right channel) lead wires coming from Main Amp PCB (5) running to Pin 3 and Pin 4 respectively on overload protection PCB should be lined up with ground wire (a) and twisted and wired as in (B) in Fig. 7.

2. Power Supply Circuit
 a. The lead wire coming from Pin 1 and Pin 2 on power supply PCB and going to Smoothing capacitor should be wired as shown in Fig. 8. (for both channels to prevent lowering distortion factor in high frequency range).
 *The figure shows the left channel case.

3. Volume Control Circuit
 a. Once volume control PCB has been removed, shield wire running from Pin 1 and Pin 2 of this PCB should be wired along the lower edge of separator wall in crevice as in Fig. 9. Never stretch wire directly across, unattached, as indicated by broken line in the figure.

4. Phono Amp Circuit
 a. Once Phono Amp. PCB has been removed, the lead wire (black) for compensating hum wired on the back side of the PCB, may have been disturbed. Therefore, after repairing and fixing PCB to the chassis, adjust the position of the lead wire using bakelite rod or the like, so that hum level comes within specified range for both channels. This can be done easily by wiring as shown in Fig. 10.
REPAIR PARTS LIST

<table>
<thead>
<tr>
<th>Schematic Location</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSISTORS, DIODES AND IC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q401,402,403,404,501,502,503,504,507,508,511,512,513,514,505,506,509,510,701</td>
<td>2SC1222(E), Phono Amp., Tone Amp., etc.</td>
<td></td>
</tr>
<tr>
<td>Q611, Q407,408, Q505,506,509, Q510,701</td>
<td>2SA750(E), Tone Amp., Overload Det., etc.</td>
<td></td>
</tr>
<tr>
<td>Q603, Q604</td>
<td>2SA818 (Y or O), Main Amp., Bias Compensator</td>
<td></td>
</tr>
<tr>
<td>Q604, Q605,506, Q607, Q608, Q609, Q810, Q702,703</td>
<td>2SC1384 (R or S), Main Amp., Bias Compensator</td>
<td></td>
</tr>
<tr>
<td>Q704, Q901,903, Q902, Q904, Q001,002,003, Q004,005,006, Q007,008</td>
<td>2SC1318 (R), Overload Relay Driver</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: * indicates hfe designation (more than 100 hfe in “O” rank.)

The hfe designation is marked with yellow.

Note 2: For transistors in Subdriver, Driver and Power Amplifier in the same channel, make sure to use the same hfe rank transistors in pair (for Power Amplifiers, all 4 pieces must have the same hfe rank.)

Example 1) In the case of Q609 and 610 in Driver stage,
 a. 1) Use the combination of 2SC1624 (Y) and 2SA814 (Y).
 2) Use the combination of 2SC1624 (O) and 2SA814 (O).
 b. Never make combinations in which one is (Y) and the other is (O) rank.

Example 2) Use hfe rank transistors of same rank, from Q001 to Q004 (for right channel, Q005 to Q008), for example, in Power Amplifier. Never mix them.

However, it is possible to use “O” rank designation with yellow mark, in combination with the one of (Y) rank.

Reference

hfe range of “O” rank: 70-140
hfe range of “Y” rank: 120-240

“O” rank designation (with yellow mark): over 100 hfe.

Note 3: In this list, Part Nos. of the transistor, categorized in 2 ranks, are as follows:

a. For (Y or O): Part No. is represented by (Y) rank No.
b. For (O or R): Part No. is represented by (O) rank No.
c. For (R or S): Part No. is represented by (R) rank No.

Therefore, when ordering these transistors (carrying 2-rank designation), it may be preferable to specify hfe rank required other than Part No.

Note 4: If the transistor carries only one rank, be sure to select that carrying correct hfe rank from among the same kind of transistors. (For example Q704 or Q902, etc.)

<table>
<thead>
<tr>
<th>Schematic Location</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSISTORS, DIODES AND IC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q505,506,509</td>
<td>2SA750(E), Tone Amp., Overload Det., etc.</td>
<td></td>
</tr>
<tr>
<td>Q610, Q702,703</td>
<td>2SC1384 (R or S), Main Amp., Bias Compensator</td>
<td></td>
</tr>
<tr>
<td>Q604</td>
<td>2SC1318 (R), Overload Relay Driver</td>
<td></td>
</tr>
<tr>
<td>Q901,903, Q902, Q904, Q001,002,003, Q004,005,006</td>
<td>2SC789 (Y), +B, –B Stabilizer</td>
<td></td>
</tr>
<tr>
<td>Q007,008</td>
<td>2SD426 (O or R), Power Amp.</td>
<td></td>
</tr>
</tbody>
</table>

Note 5: Switches with(*) are used only in those units of BS and SEMKO standards. Power switch specifications are different.

<table>
<thead>
<tr>
<th>Schematic Location</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIABLE RESISTORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VR401, VR501, VR601, VR602,603, VR701,702</td>
<td>50KB x 2 w/Switch, Mic, Level Control, w/Mic, Switch</td>
<td></td>
</tr>
<tr>
<td>VR501</td>
<td>50KMN + 100KT x 2 + 100K x 2, Balance & Volume Control</td>
<td></td>
</tr>
<tr>
<td>VR601</td>
<td>1KB, DC Balance Adj.</td>
<td></td>
</tr>
<tr>
<td>VR602,603</td>
<td>5KB, Bias Adj., Overload Protection, Level Adj.</td>
<td></td>
</tr>
<tr>
<td>VR701,702</td>
<td>10KB, Watts Meter Level Adj.</td>
<td></td>
</tr>
<tr>
<td>SWITCHES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S12,3,4,5, (1 Set)</td>
<td>614051014 Push-5 Key Function Selector</td>
<td></td>
</tr>
<tr>
<td>S6,7</td>
<td>613000026 Phono Input Impedance, Sensitivity Selector</td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>601011273 Ref. Variable Resistor VR401</td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>601011275 Tape Monitor</td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>611001638 Loudness, Bass Turnover, Filters</td>
<td></td>
</tr>
<tr>
<td>S11,14,16,17</td>
<td>61101639 Treble, Bass Control</td>
<td></td>
</tr>
<tr>
<td>S12,15</td>
<td>611001639 Treble, Bass Turnover</td>
<td></td>
</tr>
<tr>
<td>S13</td>
<td>611001637 Muting</td>
<td></td>
</tr>
<tr>
<td>S18</td>
<td>613000025 Uni-Link Switch, Uni-Link Switch, Uni-Link Switch</td>
<td></td>
</tr>
<tr>
<td>S19</td>
<td>614040816 Speakers Selector and Power Supply</td>
<td></td>
</tr>
<tr>
<td>S20,21,22,23</td>
<td>614040817** Speakers Selector and Power Supply</td>
<td></td>
</tr>
</tbody>
</table>

Note 5: Switches with(**) are used only in those units of BS and SEMKO standards. Power switch specifications are different.
<table>
<thead>
<tr>
<th>Schematic Location</th>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RY701</td>
<td>240111226</td>
<td>Relay, Overload Protection, DC24V.</td>
</tr>
<tr>
<td>M001,002</td>
<td>231310057</td>
<td>Watts Meter</td>
</tr>
<tr>
<td>T001,002</td>
<td>205001392</td>
<td>Power Transformer, (Multi-Voltage)</td>
</tr>
<tr>
<td></td>
<td>206001392(^1)</td>
<td>Power Transformer, (220V-240V)</td>
</tr>
<tr>
<td></td>
<td>201001392(^2)</td>
<td>Power Transformer, (120V Only)</td>
</tr>
</tbody>
</table>

Note 6: \(^1\) is used only in those units of BS and SEMKO standards. \(^2\) is used only in CSA approved units (for Canada).

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>141510150</td>
<td>Phono and MIC, Amp Circuit Assembly.</td>
</tr>
<tr>
<td>141710266</td>
<td>Tone Control Amp. Circuit Assembly.</td>
</tr>
<tr>
<td>141710267</td>
<td>Volume Control Circuit Assembly.</td>
</tr>
<tr>
<td>141810627</td>
<td>Left Channel Power Supply Circuit Assembly</td>
</tr>
<tr>
<td>141810628</td>
<td>Right Channel Power Supply Circuit Assembly</td>
</tr>
<tr>
<td>141610273</td>
<td>Main Amp. Circuit Assembly</td>
</tr>
<tr>
<td>141810629</td>
<td>Overload Protection Circuit Assembly</td>
</tr>
<tr>
<td>141810630</td>
<td>Output Circuit Assembly (WO/Push Switches)</td>
</tr>
</tbody>
</table>