SPECIFICATIONS

TUNER (FM-MPX)

Usable Sensitivity (THF) 2.0 microvolts
Cross Modulation Rejection 80 db
Signal to Noise Ratio below 100% modulation 60
Total Harmonic Distortion 0.8%
Frequency Deviation (Drift) 0.02%
*Frequency Response 30 to 15,000 Hz ± 1 db
Capture Ratio 2.5 db
Selectivity 42 db
Tuning Range 87 to 108 mc
Accuracy of Calibration 0.5%
Separation 40 db or more
FM & IF Limiting Stages 9

*This is limit of FCC Stereo Broadcast specifications. All H. H. SCOTT tuners have far wider frequency response.

TAPE OUTPUT

Rated Voltage Output to Tape Recorder 0.5 v
Minimum Recommended Load Resistance 47 k ohms

PRE-AMPLIFIER

Input:
Tape Head - Input Impedance 47 k ohms
Signal for Rated Output 3 mv
S/N Ratio 60 db
Phono-Input Impedance (All Switch Positions) 47 k ohms
High Level Inputs - Input Impedance 60 k ohms
Signal for Rated Output 75 db
S/N Ratio 80 db
Frequency Response in Flat Position 18-25 khz 1.0 db
Treble Controls Measured at 10,000 Hz, Boost & Cut 10 db ± 2 db
Bass Controls Measured at 30 Hz, Boost & Cut 12 db ± 2 db
Scratch Filter -6 db/octave: -3 db @ 5 k Hz
Loudness Compensation (maximum) + 12 db @ 50 Hz
Loudness Compensation + 4 db @ 10 k Hz

AMPLIFIERS

Power Ratio (watts per channel)
@ 0.8% Harmonic Distortion 32.5 watts
@ 4 ohms 25 watts
@ 8 ohms

Continuous Output Single Channel 18 watts
@ 8 ohms, 0.8% Harmonic Distortion
Continuous Output Both Channels 18 watts
@ 8 ohms, 0.8% Harmonic Distortion
Total Harmonic Distortion
0.8%

Frequency Response
18-25,000 ± 1 db

Power Bandwidth at Rated Distortion (IHF Method)
25-20,000 Hz

Hum and Noise (Phono)
-55

Range of Line Voltage and Frequency
105-120V, 50-60 Hz

Power Consumption - 117 v at 60 Hz (AC only)
25-95 watts

Equipment Needed
- Audio Oscillator
- VTVM
- Oscilloscope
- VOM
- Load Box
- Attenuator
- Distortion Meter
- Variac
- AC Supply Fixture

Set Controls to the Following:

<table>
<thead>
<tr>
<th>Control</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Selector</td>
<td>Extra</td>
</tr>
<tr>
<td>Stereo Switch</td>
<td>Stereo</td>
</tr>
<tr>
<td>Tone Controls</td>
<td>Flat "0"</td>
</tr>
<tr>
<td>Loudness</td>
<td>Min.</td>
</tr>
<tr>
<td>Stereo Bal. Sw.</td>
<td>Norm.</td>
</tr>
<tr>
<td>Noise Filter</td>
<td>OUT</td>
</tr>
<tr>
<td>Speaker Switch</td>
<td>ON</td>
</tr>
<tr>
<td>Power Switch</td>
<td>OFF</td>
</tr>
</tbody>
</table>

1. **Bias and Balance Settings and Voltage Checks**

 Turn unit on - watch carefully for any signs of voltage shorts. With bias pots (1K) still full ccw (from top of unit), check supply for 48 to 50. Adjust bias pots for 0.8 mA current from each test point in the rear of the unit to ground.

 - Check power supply board for 25V ±10%
 - Check power supply board for 12V ±10%

2. **Sensitivity Check**

 Audio osc. to EXTRA at .3V (+2 dB) input. Connect 8 ohm load to main speaker taps. Turn loudness pot to max., observe output of 18 watts (12V). Check tape output jack with troubleshooting lead for same output as signal.

3. **Distortion Check**

 At 12V output max. distortion 0.6%.

4. **Tape Monitor Switch Check**

 Audio osc. to EXTRA at .3 input to L channel. Note output at left channel speaker terminal. Put tape monitor switch in the IN position. Note loss of output. Connect input cable from L channel tape out to L channel tape in. Note restoration of signal out. Repeat process for R channel, then return tape monitor switch to out position.
5. Speaker Switch & Phone Jack Check

Speaker switch to OFF position. Note complete loss of signal. Loudness to min. Insert phone plug to phone jack, remove speaker leads, and connect to phone plug leads. Loudness to max. Note drop of 26 ± 2 dB. Switch main speakers in, note restoration of signal. Switch to remote speaker position on speaker taps and speaker switch. Note drop in output of 1 to 2 dB. Speaker switch off, note loss of signal. Return speaker switch to main position and load to main speaker taps.

6. Loudness Volume Check

Loudness pot to $\#4$ flat, osc. to 1 kHz. Take reference. Osc. to 100 Hz. Note rise of 7dB +2. Switch osc. to 10 kHz. Note rise of 0 ± 2 dB. Loudness pot to max. Osc. 1kHz output 12V. Loudness to min., drop of 70 dB. Loudness pot to max.

7. Tracking Check

In 10dB steps check tracking of L & R channels, output may be no more than 3 dB between channels down to 40 dB down.

8. Crosstalk and Stereo Switch Check

At 1 kHz turn loudness pot to 10 flat, output to 12V, mono-stereo switch to stereo, bal switch to bal. left. Note drop of 0 dB. Bal. switch to bal. right. Note additional drop of 50dB. Return controls to previous settings. Loudness pot to max., attenuate to 0 dB on 1V range.

9. Tone Control Check (0dB 1V range)

<table>
<thead>
<tr>
<th>Bass 100 Hz</th>
<th>Treble 10 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost - 10 dB +2 dB</td>
<td>Boost - 10 dB +2 dB</td>
</tr>
<tr>
<td>Cut - 15 dB +2 dB</td>
<td>Cut - 10 dB +2 dB</td>
</tr>
</tbody>
</table>

10. Frequency Response Check

Osc. 0 dB 1 kHz reference on 1V range. Sweep osc. from 35 Hz to 20 kHz, note maximum variation of ±2 dB. 3 dB down point 20 Hz or lower 3 dB down point 30 kHz

11. Regulation Check

At 1kHz 0 dB 1 V range remove 8 ohm load switch. Output rise of 1dB max.

12. Noise Filter Check

At 5 kHz noise filter IN. Note 4 dB drop in output +2 dB.

13. Preamp Gain Check @1 kHz

Attenuate input 35 dB, input leads to phono 1w. Output 0 dB 1V range ±1 dB. Stereo mono switch to mono, note drop of 7 dB in output. Stereo mono switch to stereo. Input selector switch to phono - high, note drop of 7 dB. Input selector switch back to phone - low, output 0 dB 1V range.
14. **Preamp Frequency Response Check**

- 1 kHz: 0 dB (ref)
- 10 kHz: -12 ±2 dB
- 100 kHz: +13 ±2 dB

15. **Hum Checks (all inputs shorted)**

<table>
<thead>
<tr>
<th>Position</th>
<th>Loudness Pot</th>
<th>Max Hum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra</td>
<td>0</td>
<td>3 mV</td>
</tr>
<tr>
<td>Extra</td>
<td>10</td>
<td>5 mV</td>
</tr>
<tr>
<td>Phono High</td>
<td>10</td>
<td>30 mV</td>
</tr>
<tr>
<td>Phono Low</td>
<td>10</td>
<td>30 mV</td>
</tr>
</tbody>
</table>

16. Repeat steps 2 through 15 for R channel.
382B TUNER-AM SECTION

1. Switch tuner to AM position, output from tape output jack.

2. Connect signal generator at 455 kHz through .05 capacitor to green lead from If board to feedthrough terminal in front end. Clip ground lead to chassis. Remove RF transistor.

3. Peak IF's and detector for maximum A.G.C. (tuning meter indication) of audio noise output, using no modulation. Final peaking should be done with 20 uv from generator with output level of 100 mv ±2 dB.

4. Remove signal generator coupling to IF's, connect generator to external antenna terminals. Install RF transistor.

5. Tune oscillator coil to 600 KHz and oscillator trimmer to 1600 kHz. Tune RF trimmer at 1400 KHz, and antenna slug at 800 KHz. Seal antenna core.

6. Repeat Step 5 until unit is aligned and max. output at given frequencies has been achieved. Calibrate:

 590 KHz ±10 KHz 850 KHz 1030 1510 (tol. ±20 KHz)

7. Check signal-to-noise at 600 KHz, 100 uv for 10 dB, at 1400 KHz, 10 uv for 10 dB.

8. Remove generator connection from external antenna terminals, loop around low end of loop antenna using 47 ohm resistor, and at 1400 KHz peak antenna trimmer.

9. Check output level left and right tape jacks, at 100 uv output should be 250mv ±2 dB.

10. With phones, check for AM calibration, oscillation, harmonic pickup, etc.

11. With AM tuned to low end of band, set meter adjust control so meter reads "0". Switch to FM and note little or no change max. difference between AM and FM across band, 2 meter divisions.
1. Connect RF generator to the antenna terminals with the following adaptations:

2. Set RF generator and FM tuning dial to 92 mHz. Generator output should be about 6 uv. Peak L205, L204 and L201 for maximum audio output.

3. Set generator and FM tuning dial to 106 mHz. Peak RF trimmer and mixer trimmer.

4. With about 3 uv from FM generator, repeat procedure until no further output is obtained. Signal should look like this:

5. The only time that the oscillator mixer and trimmer should be touched is if the calibration is out of specification.
Mechanical layout of Front Ends denoting, Oscillator, Mixer, Antenna Coils and Voltages present under normal operating conditions.
ALL VOLTAGES POSITIVE DC±15% MEASURED WITH 20 K ohm/V VOM AND 117 VAC LINE.
FM VOLTAGES MEASURED WITH 300 OHM LOAD ON EXTERNAL FM ANTENNA TERMINALS. TUNER
OFF-STATION. INPUT SWITCH IN FM POSITION. AM VOLTAGES MEASURED WITH LOOP ANTENNA,
TUNER OFF-STATION, INPUT SWITCH IN "AM" POSITION.

Q301, Q302 - QSE1002

AM - FM I.F.
All voltages measured with 20,000 ohm/volt VOM; 300 ohm antenna and no signal.

Q201
G .025
D 9.2
S 1.05

Q202
B .45
E .05

Q203
B 3
E 2.6
C 10.8
C 10.2

Troubleshooting Guide

Trouble Possible Remedy

Low gain Replace Q201

No Output Open LRFC 2.2 or .33
No AM signal defective Q201, Q202, Q204
 Open LRFC 2.2 (L209)
 Defective (L208)
Oscillation Defective D203
Low or intermittent AM Shorted Plates in tuning condenser
All voltages measured with 20,000 ohm/volt VOM; 300 ohm antenna and no signal.

Q201 Q202 Q204
G .025 B .45 B 3
D 9.2 E .05 E 2.6
S 1.05 C 10.8 C 10.2

Troubleshooting Guide

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Possible Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low gain</td>
<td>Replace Q201</td>
</tr>
<tr>
<td>No Output</td>
<td>Open LRFC 2.2 or .33, defective Q201, Q202, Q204</td>
</tr>
</tbody>
</table>
342B, 382B TUNER-FM SECTION

EQUIPMENT NEEDED
VTVM FM Generator
Oscilloscope MX Generator
VOM Audio Generator
Distortion Meter

Set Controls to the Following:
Separation Pots Max CW
Input Select. Switch FM

1. Mono Alignment and Sensitivity Check

Front End and IF Alignment
With about 10 uv generator output, align and peak front end for max. output. With 3 uv input, align IF's for max. audio. With 1 or 2 K uv input, align detector for minimum distortion.

2. Sensitivity and Distortion
Measure sensitivity of tuner with 3 uv RF input. Must obtain 30 dB usable sensitivity at 92, 98, and 106 mc. Recheck distortion, 2K uv input. 400 Hz- max. distortion of 0.8%.

3. FM Hum Check
Tune to 91.5 mc, measure min. of 60 dB (AC plug may be reversed).

De-emphasis Check
Tune to 90 mc (change modulator to 8 KHz), note decrease of 12 ± dB in output.

Calibration Check
Check calibration against stations - max. tolerance ±2 mc.

4. Multiplex Alignment - Unit to Stereo
 a) Pilot Adjustment - Scope probe (Low - Cap) to test point at base of Q3, peak L2 and L3 for max. pilot. With VOM, measure 2.5 to 3.5 dc across 2.2K resistor in the emitter of Q3.
 b) With VOM across 2.2K resistor carefully tune L2 & L3 for max., then tune T1 for dip.
 c) Separation Adjustment - Output from Ch. A. Adjust scope to obtain pattern and adjust L2 for min. output observing scope. Adjust A separation pot for min. output. Tuner output from Ch. B and adjust B separation pot for min. as outlined above. Repeat between A & B until no further improvement is seen.
 d) Final separation measurements to be done in each channel:

 Audio Modulation Minimum Separation
 400 Hz 30 dB

 If separation specs are not met, recheck IF's for proper alignment. Also recheck steps 4.b) and 4.c)
 e) Stereo Switchover Check
 Check switchover point (at generators), min. 10 uV, max. 30 uV. Switchover may be adjusted by threshold pot on MX board.
 f) Final Listen Check
 Check all inputs and outputs (including phone jacks), switches and controls for proper operation. Check overall appearance and scrap inside unit. Check for proper switching of stereo light. Check calibration against stations specs are ±0.2 mc.
VOLTAGE CHECKS (UA703)

Pin 1 B+ 12 Volts
Set VOM on 3 volt scale: positive lead of meter on pin 1, negative lead on pin 2 and/or pin 6. If voltage is apparent, then that particular stage of IC is operating normally

No output or distortion check diodes D303 and D304 for defect

Meter operates okay

Meter pegging either direction defective D301 or D302
<table>
<thead>
<tr>
<th>Part #</th>
<th>Description</th>
<th>Customer List</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-DC-20</td>
<td>Dial Cord</td>
<td>$1.75</td>
</tr>
<tr>
<td>A-FW-B</td>
<td>Flywheel Assembly</td>
<td>4.80</td>
</tr>
<tr>
<td>CETM-1000/30</td>
<td>Electrolytic Capacitor</td>
<td>2.65</td>
</tr>
<tr>
<td>CETM-1000/50</td>
<td>Electrolytic Capacitor</td>
<td>3.48</td>
</tr>
<tr>
<td>CMM-.22/250</td>
<td>Electrolytic Capacitor</td>
<td>1.50</td>
</tr>
<tr>
<td>F-AGX-2</td>
<td>Speaker Fuse</td>
<td>.24</td>
</tr>
<tr>
<td>F-SB-1½</td>
<td>Power Fuse</td>
<td>.45</td>
</tr>
<tr>
<td>J-3-ST-5</td>
<td>Phone Jack</td>
<td>.65</td>
</tr>
<tr>
<td>KN-001</td>
<td>Knob</td>
<td>.40</td>
</tr>
<tr>
<td>KN-002</td>
<td>Knob</td>
<td>.40</td>
</tr>
<tr>
<td>KN-005</td>
<td>Tuning Knob</td>
<td>.50</td>
</tr>
<tr>
<td>L-RC-2</td>
<td>Choke</td>
<td>.25</td>
</tr>
<tr>
<td>M-SS-11</td>
<td>Meter</td>
<td>5.95</td>
</tr>
<tr>
<td>N-342-B-1</td>
<td>Panel</td>
<td>14.40</td>
</tr>
<tr>
<td>N-D-FM-23</td>
<td>Dial Glass</td>
<td>2.94</td>
</tr>
<tr>
<td>QP-8</td>
<td>Power Transistor</td>
<td>6.00</td>
</tr>
<tr>
<td>QP-11</td>
<td>Power Transistor</td>
<td>3.84</td>
</tr>
<tr>
<td>RW2-.82</td>
<td>Wire Wound Transistor</td>
<td>.20</td>
</tr>
<tr>
<td>RW5-15-2X2</td>
<td>Stand Up Resistor</td>
<td>1.47</td>
</tr>
<tr>
<td>RCV-10K-PH</td>
<td>Potentiometer</td>
<td>1.00</td>
</tr>
<tr>
<td>SR-2-50</td>
<td>Rectifier</td>
<td>.80</td>
</tr>
<tr>
<td>SS-22-3/3A</td>
<td>Slide Switch</td>
<td>.40</td>
</tr>
<tr>
<td>SS-43</td>
<td>Slide Switch</td>
<td>.50</td>
</tr>
<tr>
<td>SPS-12-3</td>
<td>On-Off Switch</td>
<td>.48</td>
</tr>
<tr>
<td>SBW-115-2</td>
<td>Rotary Switch</td>
<td>5.75</td>
</tr>
<tr>
<td>TR-8-9</td>
<td>Power Transformer</td>
<td>18.00</td>
</tr>
<tr>
<td>V-PL-1819</td>
<td>Neon Lite Bulb</td>
<td>.40</td>
</tr>
<tr>
<td>V-PL-1847</td>
<td>Pilot Lite Bulb</td>
<td>.40</td>
</tr>
<tr>
<td>Z-FM-15</td>
<td>Front End</td>
<td>48.15</td>
</tr>
<tr>
<td>Z-PC-1F-4</td>
<td>IC Board</td>
<td>30.00</td>
</tr>
<tr>
<td>Z-PC-NX-14</td>
<td>Multiplex</td>
<td>26.56</td>
</tr>
<tr>
<td>Z-PC-TD-6</td>
<td>Driver Board</td>
<td>59.88</td>
</tr>
<tr>
<td>Z-PC-FS-6</td>
<td>Power Supply</td>
<td>11.40</td>
</tr>
<tr>
<td>Z-AM-FM-8</td>
<td>Front End</td>
<td>41.10</td>
</tr>
</tbody>
</table>