Cassette Deck

Because of unique interconnecting cables, when a component requires service, send or bring in the entire system.

NEW MECHANISM (AR-1)

Specifications

- **Deck system**: Stereo cassette deck
- **Track system**: 4-track, 2-channel
- **Recording system**: AC bias
- **Erasing system**: AC erase
- **Tape speed**: 4.8 cm/sec.
- **Bias frequency**: 80 kHz
- **Heads**
 - DECK 1 (playback head): Permalloy head
 - DECK 2 (recording/playback/erasure): Permalloy head, Double gap ferrite head
 - Motors (capstan/reel table drive): DC servo motor (reel table drive): DC motor
- **Wow and flutter**: 0.1% (WRMS)
- **Fast forward and rewind times**: Approx. 45 seconds with C-60 cassette tape
- **Frequency response (Dolby NR off, CCRT on)**
 - **NORMAL**: 20 Hz–17 kHz
 - **CrO₂**: 30 Hz–15 kHz (+0 dB, −7 dB, DIN)
 - **METAL**: 20 Hz–20 kHz
- **S/N (CrO₂)**
 - Dolby NR off: 56 dB (A weighted)
 - Dolby B NR on: 66 dB (CCIR)
- **Input sensitivity and impedance**: LINE IN: 126 mV/17.6 kΩ
- **Output voltage and impedance**: LINE OUT: 400 mV/220Ω

System: SC-CH404

<table>
<thead>
<tr>
<th>Suffix for Model No.</th>
<th>Area</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>Europe, Asia, Latin America, Middle Near East, Africa and Oceania</td>
<td>(K) Black Type</td>
</tr>
</tbody>
</table>

General

- **Dimensions (W×H×D)**: 270×118.5×263 mm
- **Weight**: 2.85 kg

Notes:
1. Weights and dimensions shown are approximate.
2. Design and specifications are subject to change without notice.

Dolby noise reduction manufactured under license from Dolby Laboratories Licensing Corporation.

"Dolby" and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.

<table>
<thead>
<tr>
<th>System</th>
<th>Tuner</th>
<th>Amplifier</th>
<th>Cassette deck</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-CH404</td>
<td>ST-CH505</td>
<td>SL-CH505</td>
<td>SE-CH404</td>
<td>SB-CH404</td>
</tr>
</tbody>
</table>

Notes:
- **For Europe and Oceania**
- **For Asia, Latin America, Middle Near East and Africa**
- **For Europe...Made in PAES**
 - For Asia, Latin America, Middle Near East and Africa and Oceania...Made in NABEL.

Technics
Contents

- LOCATION OF CONTROLS ... 2
- DISASSEMBLY INSTRUCTIONS 2-7
- SCHEMATIC DIAGRAM .. 8-14
- PRINTED CIRCUIT BOARD DIAGRAM 15-18
- TERMINAL GUIDE OF IC'S, TRANSISTORS AND
 DIODES .. 18
- WIRING CONNECTION DIAGRAM 19

MEASUREMENTS AND ADJUSTMENTS 20-22
- BLOCK DIAGRAM .. 23, 24
- FUNCTION OF IC TERMINALS 25, 26
- REPLACEMENT PARTS LIST 27-30, 32, 33
- CABINET PARTS LOCATION 31
- MECHANISM PARTS LOCATION 34-37

NOTE:
Refer to the service manual for Model No. SE-CH404 (Order No. AD9307218C8) for information on
"ACCESSORIES", "STACKING THE COMPONENTS", "CONNECTIONS" and "PACKAGING".

Location of Controls

The functions indicated by the numbers with black background (for example 8) can also be activated from the remote control.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Deck 1/deck 2 select button and indicators (DECK 1/2)</td>
</tr>
<tr>
<td>6</td>
<td>Deck 1 cassette holder close button (CLOSE)</td>
</tr>
<tr>
<td>7</td>
<td>Fast forward/rewind/tape program sensor buttons [◄◄ (TPS), (TPS) ►►]</td>
</tr>
<tr>
<td>8</td>
<td>Deck 2 cassette holder close button (CLOSE)</td>
</tr>
<tr>
<td>9</td>
<td>Record pause button and indicator (REC PAUSE)</td>
</tr>
<tr>
<td>10</td>
<td>One-touch tape edit buttons (NORMAL, HIGH)</td>
</tr>
<tr>
<td>11</td>
<td>Deck 2 cassette holder open button (▲ OPEN)</td>
</tr>
<tr>
<td>12</td>
<td>Playback buttons and indicators (<, >)</td>
</tr>
<tr>
<td>13</td>
<td>Stop button (■)</td>
</tr>
<tr>
<td>14</td>
<td>CCRT button and indicator (CCRT)</td>
</tr>
<tr>
<td>15</td>
<td>Deck 2 cassette holder</td>
</tr>
</tbody>
</table>

Disassembly Instructions

"ATTENTION SERVICER"
Some chassis components may have sharp edges. Be careful when disassembling and servicing.

Replacement of the Foot

1. Remove the 4 heat melted posts on the Bottom board ass'y with a pair of nippers or similar tool.
2. To replace the foot (RKA0011A-2) on the Bottom board ass'y melt the 4 posts with a soldering iron.
Ref. No. 1

Removal of the Cabinet

Procedure
1

1. Remove the 6 screws (1-6).
2. Remove the cabinet in the direction of arrow.

Ref. No. 2

Removal of the Main P.C.B.

Procedure
1 → 2

1. Remove the 3 flat cables (CN1A, CN2A, CN3).
2. Remove the 2 connectors (CP1, CP2).
3. Remove the 3 screws (1-3).

- Push the top of the connector and then pull out the flat cable.

4. Remove the 1 screws (4).
5. Remove the main P.C.B. in the direction of arrow.

Ref. No. 3

Removal of the Front Grill

Procedure
1 → 3

1. Remove the 3 flat cables (CN1A, CN3A, CN3).
2. Remove the 2 connectors (CP1, CP2).
3. Remove the 3 screws (1-3).
4. Remove the front grill in the direction of arrow.
Removal of the Cassette Lid Ass'y (DECK 1 and DECK 2)

1. Turn the gear in the direction of arrow ①, and open the cassette lid ass'y.

2. Remove the cassette lid ass'y in the direction of arrow ②.

Removal of the Close Rod (DECK 1 and DECK 2)

- Push the close rod in the direction of arrow ①, and then remove the close rod in the direction of arrow ②.

Removal of the Motor Control P.C.B. (DECK 1 and DECK 2)

1. Unsolder the reel motor terminal (2 points).
2. Unsolder the capstan motor terminal (4 points).
3. Remove the 2 screws ①, ②.
4. Release the 1 claw.
5. Pull out the motor control P.C.B. in the direction of arrow, and then remove the 2 connectors (CS971, CP801).
• The RS-CH404 is designed to operate on the power supplied from the SE-CH404 Amplifier.
• To operate the RS-CH404 alone for testing or servicing, without having power supplied from the SE-CH404, use the following method:
Apply 11 V AC power between TP601 and TP602, and TP602 and TP603.

Measurement Condition
• Reverse-mode selector switch; _
• Dolby NR switch; OFF
• Make sure heads are clean.

Measuring instrument
• EVM (Electronic Voltmeter)
• AF oscillator
• Digital frequency counter

Test tape
• Head azimuth adjustment (8 kHz, -20 dB); QZZCFM
• Tape speed adjustment (3 kHz, -10 dB); QZZCWAT
• Playback frequency response (315 Hz, 12.5 kHz, 10 kHz, 8 kHz, 4 kHz, 1 kHz, 250 Hz, 125 Hz, 63 Hz, -20 dB); QZZCFM
• Playback gain adjustment (315 Hz, 0 dB); QZZCFM

Fig. 1

Measurement Condition
• Make sure capstan and pressure roller are clean.
• Judgeable room temperature 20±5°C (68±9°F)
HEAD AZIMUTH ADJUSTMENT (DECK 1/2)
1. Playback the azimuth adjustment portion (5 kHz, ~0 dB) of the test tape (OZCZCFM). Vary the azimuth adjusting screw until the output of the H-CH is maximized.
2. Perform the same adjustment in the play mode.
3. Adjust the azimuth adjusting screw.

Fig. 4

TAPE SPEED ADJUSTMENT (DECK 1/2)
1. Playback the middle portion of the test tape (OZCZWAT).
2. Adjust Deck 1-VR801 and Deck 2-VR803 for the output value shown below.

<table>
<thead>
<tr>
<th>Speed Target</th>
<th>Standard Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000±15 Hz (NORMAL speed)</td>
<td>3000±5 Hz (HIGH speed)</td>
</tr>
</tbody>
</table>

High speed (set the unit to forward (FWD) mode):
3. Short-circuit the TEST jumper ("DECK 1" or "DECK 2" indicator blinks).
4. Playback the middle portion on the test tape (OZCZWAT).
5. Press the one touch tape edit (High) button.
 This will set the high speed mode.
6. At that time, check if the output from DECK 1 is within the standard value.

Standard value: 6000±500 Hz (HIGH speed)
7. Adjust VR802 so that the output frequency of DECK 2 is within ±30 Hz for the value of the output frequency of DECK 1.

ERASE CURRENT CONFIRMATION (DECK 2)
1. Short-circuit the TEST jumper.
2. Press the REC PAUSE button.
3. Check if the output at this time between the erase current confirmation point (TP301 and R301) (the output on both edges of R301) is within the standard value.

Standard value: 160±25 mA
4. Disconnect the TEST jumper from the frame ground.

Note: The test tape is not required when confirming the erase current.

The RS-CH404 can automatically adjust playback gain and rec./play frequency response & gain.

- Preparations for Adjustment
1. Connect an AF oscillator to the line inputs, IN1 (L channel) and IN2 (R channel) (see Fig. 1).
2. Connect an AC voltmeter to the line outputs, OUT1 (L channel) and OUT2 (R channel) (see Fig. 1).
3. Make sure that the power is turned off, and then ground the EROM jumper and TEST jumper on the Main P.C.B. to the frame ground.
4. Turn on the power (see page 20).
5. The EROM (IC502) is initialized and the indicator shows blinking letters "DECK 1" or "DECK 2" and "CCTRT".
6. Apply a test tone signal [315 Hz, –18 dB (128 mV)] from the AF oscillator to the line inputs (TP301 for channel L, TP32 for channel R).
7. Make sure that no tape is loaded in DECK 1 or DECK 2.
 While pressing and holding the REC PAUSE button, adjust the AF oscillator output level until the signal level at the line outputs (TP301 for L channel, TP32 for R channel) is 400 mV. After setting the AF oscillator output level, keep holding down the REC PAUSE button for approx. 5 sec.
8. Release the REC PAUSE button.
9. Disconnect EROM jumper from the frame ground.

- Playback Gain Adjustment
Load the test tape (OZCZCFM) into DECK 1 and play the 314 Hz, 0 dB test tone.
Press the CCRT button (">") indicator blinks.

- Rec./Play Frequency Response & Gain Adjustment
Load the test tape (OZCZRA) into DECK 2 (any normal bias blank tape may be used instead).
Press the CCRT button ("REC PAUSE" indicator blinks).

- Post Auto-adjustment Checks
1. Press the CCRT button.
2. "CCTRT" indicator turns on.
3. Make sure that the indicator shows the following information:

<table>
<thead>
<tr>
<th>OK</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAY Indicator on DECK 1</td>
<td>PLAY Indicator on DECK 2</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

 ">") indicator blinks.
 "<") indicator blinks.

4. Disconnect TEST jumper from the frame ground.
Function of IC Terminals

IC701 (M36062M4084F)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Terminal Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KEY1</td>
<td>I</td>
<td>Operation key input</td>
</tr>
<tr>
<td>2</td>
<td>SIG-R</td>
<td>I</td>
<td>Level-detection input for audio signal (R-ch)</td>
</tr>
<tr>
<td>3</td>
<td>SIG-L</td>
<td>I</td>
<td>Level-detection input for audio signal (L-ch)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PB-LVL (DA2)</td>
<td>O</td>
<td>Control signal output for playback level (R-ch)</td>
</tr>
<tr>
<td>13</td>
<td>PB-LVL (DA1)</td>
<td>O</td>
<td>Control signal output for playback level (L-ch)</td>
</tr>
<tr>
<td>14</td>
<td>TST-SIG</td>
<td>O</td>
<td>Audio test signal output (400 Hz/10 kHz)</td>
</tr>
<tr>
<td>15</td>
<td>LED-CLK</td>
<td>O</td>
<td>Serial clock signal output for LED drive control to IC601</td>
</tr>
<tr>
<td>16</td>
<td>LED-DATA</td>
<td>O</td>
<td>Serial data signal output for LED drive control to IC601</td>
</tr>
<tr>
<td>17</td>
<td>CORT-KEY</td>
<td>I</td>
<td>Key input for CCR11T</td>
</tr>
<tr>
<td>18</td>
<td>CORT-LED</td>
<td>I/O</td>
<td>ON/OFF control signal output for CCR11T display to LED</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>EEPR-CS</td>
<td>O</td>
<td>Chip select signal output for EEPR11M</td>
</tr>
<tr>
<td>23</td>
<td>EEPR-SK</td>
<td>O</td>
<td>Serial clock signal output for EEPR11M</td>
</tr>
<tr>
<td>24</td>
<td>EEPR-DATA</td>
<td>I/O</td>
<td>Serial data signal input/output for EEPR11M detection</td>
</tr>
<tr>
<td>25</td>
<td>ACIN</td>
<td>I</td>
<td>Signal input for power OFF mode detection</td>
</tr>
<tr>
<td>26</td>
<td>CVSSI</td>
<td>—</td>
<td>Connected to VSS</td>
</tr>
<tr>
<td>27</td>
<td>RESET</td>
<td>I</td>
<td>Reset signal input from microprocessor</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>XIN</td>
<td>I</td>
<td>Clock signal input from microprocessor</td>
</tr>
<tr>
<td>31</td>
<td>XOUT</td>
<td>O</td>
<td>Clock signal output to microprocessor</td>
</tr>
<tr>
<td>32</td>
<td>VSS</td>
<td>—</td>
<td>Connected to GND</td>
</tr>
<tr>
<td>33</td>
<td>BUS-DATA-I</td>
<td>O</td>
<td>Bus data signal output</td>
</tr>
</tbody>
</table>

Pin No. | Terminal Name | Function |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>BUS-CLK-D</td>
<td>O Bus clock signal output</td>
</tr>
<tr>
<td>35</td>
<td>BUS-DATA-I</td>
<td>I Bus data signal input</td>
</tr>
<tr>
<td>36</td>
<td>BUS-CLK-I</td>
<td>I Bus clock signal input</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>TST-EPROM</td>
<td>I Signal input for EEPROM initialization</td>
</tr>
<tr>
<td>42</td>
<td>TST-MODE</td>
<td>I Switching signal input for Test ON/OFF mode</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>CS-NR</td>
<td>I Model selection input (IC604LE, "L")</td>
</tr>
<tr>
<td>45</td>
<td>TPS</td>
<td>I Signal input for sense presence detection in TPS operation</td>
</tr>
<tr>
<td>46</td>
<td>LMT</td>
<td>O Muting signal output for line out</td>
</tr>
<tr>
<td>47</td>
<td>DOLBY-B/C</td>
<td>O Dolby B/C switching signal output</td>
</tr>
<tr>
<td>48</td>
<td>NR ON/OFF</td>
<td>O Dolby ON/OFF switching signal output</td>
</tr>
<tr>
<td>49</td>
<td>MIX-LPF</td>
<td>O Filter/ON/OFF switching signal output in audio signal level detector</td>
</tr>
<tr>
<td>50</td>
<td>ENC/DEC</td>
<td>O Encoder/Decoder switching signal output to IC for Dolby</td>
</tr>
<tr>
<td>51</td>
<td>AUTO</td>
<td>O Gain control signal output for audio signal level detection circuit</td>
</tr>
<tr>
<td>52</td>
<td>BIAS-MTL</td>
<td>O Control signal output for recording bias in use of a metal tape</td>
</tr>
<tr>
<td>53</td>
<td>BIAS-CROI2</td>
<td>O Control signal output for recording bias in use of a Chrome tape</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>AIC-CLK</td>
<td>O Clock control signal output to IC for audio recording/playback</td>
</tr>
<tr>
<td>62</td>
<td>AIC-DATA</td>
<td>O Data control signal output to IC for audio recording/playback</td>
</tr>
</tbody>
</table>

Pin No. | Terminal Name | Function |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>TST-LPF</td>
<td>O Filter/ON/OFF switching signal output for CORT recording test signal (400 Hz: "H")</td>
</tr>
<tr>
<td>64</td>
<td>MD-LATCH1</td>
<td>O Latch signal output to IC (B01) for mechanism drive on deck 1</td>
</tr>
<tr>
<td>65</td>
<td>MD-DATA</td>
<td>O Serial data signal output to mechanism drive ICs (IC601, IC602)</td>
</tr>
<tr>
<td>66</td>
<td>MD-CLK</td>
<td>O Serial clock signal output to mechanism ICs (IC601, IC602)</td>
</tr>
<tr>
<td>67</td>
<td>A-RLP1</td>
<td>I Pulse signal input for rotation detection to right side real of deck 1</td>
</tr>
<tr>
<td>68</td>
<td>R-RLP1</td>
<td>I Pulse signal input for rotation detection to right side rear of deck 1</td>
</tr>
<tr>
<td>69</td>
<td>MD-LATCH2</td>
<td>O Latch signal output to IC (IC602) for mechanism drive on deck 2</td>
</tr>
<tr>
<td>70</td>
<td>BIAS</td>
<td>O ON/OFF switching signal output for recording bias</td>
</tr>
<tr>
<td>71</td>
<td>EQ-X2</td>
<td>O Switching signal output for recording equalizer</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>VSS</td>
<td>—</td>
</tr>
<tr>
<td>74</td>
<td>VREF</td>
<td>—</td>
</tr>
<tr>
<td>75</td>
<td>AVSS</td>
<td>—</td>
</tr>
<tr>
<td>76</td>
<td>AD-SW1</td>
<td>I Signal input for mechanism switches for deck 1</td>
</tr>
<tr>
<td>77</td>
<td>R-RLP2</td>
<td>I Pulse signal input for rotation detection to right side real of deck 2</td>
</tr>
<tr>
<td>78</td>
<td>L-RLP2</td>
<td>I Pulse signal input for rotation detection to left side real of deck 2</td>
</tr>
<tr>
<td>79</td>
<td>AD-SW2</td>
<td>I Signal input for mechanism switches for deck 2</td>
</tr>
<tr>
<td>80</td>
<td>MA-SW2</td>
<td>I Signal input for mechanism switches for deck 2</td>
</tr>
</tbody>
</table>

IC801 and IC802 (BA6265FP-E1)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Terminal Name</th>
<th>I/O</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RM-</td>
<td>O</td>
<td>Real motor control (-)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>—</td>
<td>Real motor GND</td>
</tr>
<tr>
<td>3</td>
<td>RM+</td>
<td>O</td>
<td>Real motor control (+)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>—</td>
<td>Connected to GND</td>
</tr>
<tr>
<td>7</td>
<td>7.5 V</td>
<td>I</td>
<td>Power Input (7.5 V)</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>—</td>
<td>Capstan motor GND</td>
</tr>
<tr>
<td>9</td>
<td>CPM</td>
<td>O</td>
<td>Capstan motor control</td>
</tr>
<tr>
<td>10</td>
<td>NC</td>
<td>—</td>
<td>Connected to GND</td>
</tr>
<tr>
<td>11</td>
<td>CPM-SW</td>
<td>O</td>
<td>Capstan motor speed control</td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td>—</td>
<td>Connected to GND</td>
</tr>
<tr>
<td>13</td>
<td>LACH</td>
<td>I</td>
<td>I/O expander latch signal output</td>
</tr>
<tr>
<td>14</td>
<td>S.O.</td>
<td>O</td>
<td>I/O expander serial output</td>
</tr>
<tr>
<td>15</td>
<td>DATA</td>
<td>I/O</td>
<td>Expander data input</td>
</tr>
<tr>
<td>16</td>
<td>CLK</td>
<td>I/O</td>
<td>Expander clock input</td>
</tr>
<tr>
<td>17, 18</td>
<td>NC</td>
<td>—</td>
<td>Connected to CLK</td>
</tr>
<tr>
<td>19</td>
<td>NC</td>
<td>—</td>
<td>Connected to LACH</td>
</tr>
<tr>
<td>20, 21</td>
<td>GND</td>
<td>—</td>
<td>GND</td>
</tr>
<tr>
<td>22</td>
<td>5 V</td>
<td>I</td>
<td>Power Input (5 V)</td>
</tr>
<tr>
<td>23, 24</td>
<td>15 V</td>
<td>I</td>
<td>Power Input (15 V)</td>
</tr>
<tr>
<td>25</td>
<td>NC</td>
<td>—</td>
<td>Connected to GND</td>
</tr>
<tr>
<td>26</td>
<td>GND</td>
<td>—</td>
<td>GND</td>
</tr>
<tr>
<td>27</td>
<td>PL15 V</td>
<td>O</td>
<td>Plunger drive signal output (15 V)</td>
</tr>
<tr>
<td>28</td>
<td>PL17.5 V</td>
<td>O</td>
<td>Plunger drive signal output (7.5 V)</td>
</tr>
</tbody>
</table>
Replacement Parts List

Notes:
- Important safety notice: Use genuine manufacturer's part (as noted by a checkmark). Parts not noted as genuine may not be as safe as genuine parts.
- Equipment may contain sensitive parts (indicated by double checkmark). Use genuine parts to prevent damage.
- Parts listed are for information purposes only. Always consult your local distributor for the most current information.

Parts Information:
- **Component Construction:**
 - **Type:** Electrical
 - **Status:** In stock

Part Numbers:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Table Contents:
- **Component Construction:**
- **Type:** Electrical
- **Status:** In stock

Part Numbers:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Reference:
- **RS-CH040**
- **RS-CH040**

Table:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Diagram:
- **RS-CH040**
- **RS-CH040**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**

Ref. No.
- **Part No.**
- **Part Name & Description**
- **Remarks**

Legend:
- **Ref. No.**
- **Part No.**
- **Part Name & Description**
- **Remarks**
<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Part No.</th>
<th>Values & Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4235</td>
<td>BDR7123702</td>
<td>1/4W, 5.6K</td>
</tr>
<tr>
<td>4237, 320</td>
<td>BDR7123703</td>
<td>1/4W, 10K</td>
</tr>
<tr>
<td>4240</td>
<td>BDR7123650T</td>
<td>1/4W, 15K</td>
</tr>
<tr>
<td>4253</td>
<td>BDR7123505</td>
<td>1/4W, 22K</td>
</tr>
<tr>
<td>4266</td>
<td>BDR7123475T</td>
<td>1/4W, 47K</td>
</tr>
<tr>
<td>4276, 2276</td>
<td>BDR7123485</td>
<td>1/4W, 100K</td>
</tr>
<tr>
<td>4304</td>
<td>BDR7123597T</td>
<td>1/4W, 330K</td>
</tr>
<tr>
<td>4311, 110</td>
<td>BDR7123610</td>
<td>1/4W, 390K</td>
</tr>
<tr>
<td>4311, 112</td>
<td>BDR7123612</td>
<td>1/4W, 4.7K</td>
</tr>
<tr>
<td>4311, 113</td>
<td>BDR7123613</td>
<td>1/4W, 2.7K</td>
</tr>
<tr>
<td>4311, 115</td>
<td>BDR7123615</td>
<td>1/4W, 6.8K</td>
</tr>
<tr>
<td>4311, 118</td>
<td>BDR7123618</td>
<td>1/4W, 6.8K</td>
</tr>
<tr>
<td>4311, 120</td>
<td>BDR7123620</td>
<td>1/4W, 100K</td>
</tr>
<tr>
<td>4311, 122</td>
<td>BDR7123622</td>
<td>1/4W, 150K</td>
</tr>
<tr>
<td>4311, 124</td>
<td>BDR7123624</td>
<td>1/4W, 330K</td>
</tr>
<tr>
<td>4311, 125</td>
<td>BDR7123625</td>
<td>1/4W, 6.8K</td>
</tr>
<tr>
<td>4311, 127</td>
<td>BDR7123627</td>
<td>1/4W, 100K</td>
</tr>
<tr>
<td>4311, 129</td>
<td>BDR7123629</td>
<td>1/4W, 150K</td>
</tr>
<tr>
<td>4311, 131</td>
<td>BDR7123631</td>
<td>1/4W, 220K</td>
</tr>
<tr>
<td>4311, 133</td>
<td>BDR7123633</td>
<td>1/4W, 330K</td>
</tr>
</tbody>
</table>

Notes: * Capacity values are in microfarads (µF) unless specified otherwise. + Pitch-facet (µF) = Pitch-facet (µF) = Resistance values are in ohms.

Values & Remarks:
- 29 -